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Chapter 1

Preamble

1.1 Introduction

1.1.1 Percolation

Percolation is a model for porous media. It was introduced by Broadbent and Hammersley [BH57]
in 1957. It aims to understand how the porosity of a media at a macroscopic scale, i.e., at the scale
of a piece of rock, is created by the circulation of water at a microscopic scale. We suppose that
the water can flow through microscopic tubes inside the rock that are the edges E of a given graph
G = (V,E) of vertices V . For instance one can choose G = (Zd,Ed) where d ≥ 2 and Ed is the set
of edges between nearest neighbors in Zd for the Euclidean distance. We associate with the edges
of the graph a family of i.i.d. random variables (t(e), e ∈ E) where t(e) has a Bernoulli distribution
of parameter p ∈ [0, 1]. This parameter gives the level of porosity of the rock: we say that an edge
e is open, i.e., that the water can flow through the corresponding microscopic tube, if t(e) = 1, and
we say that the edge e is closed otherwise. This is the model of i.i.d. bound percolation on G.

The piece of rock itself is macroscopic, i.e., infinitely large in comparison with the microscopic
tubes, thus the media is porous at the macroscopic scale if the water can flow through microscopic
tubes between points that are arbitrarily far away one from each other. In other words, the media is
porous if the graph (V, {e ∈ E : t(e) = 1}) of open edges has an infinite cluster. The fundamental
result in percolation theory is the existence of a phase transition for percolation on the graph
(Zd,Ed). It states that the behavior of the system changes precisely when the parameter p reaches
a critical value pc(d) ∈ (0, 1): the media is porous for p > pc(d), and it is not for p < pc(d). It has
been proved by Broadbent and Hammersley [BH57] and Hammersley [Ham57, Ham59].

Theorem 1 (Phase transition). Let d ≥ 2 and G = (Zd,Ed). There exists a critical parameter
pc(d) ∈ (0, 1) such that

• if p > pc(d) then almost surely there exists a unique infinite cluster in the graph (Zd, {e ∈ Ed :
t(e) = 1}) of open edges;

• if p < pc(d) then almost surely there does not exist any infinite cluster in the graph (Zd, {e ∈
Ed : t(e) = 1}) of open edges.

In dimension d = 2, it has been proved by Kesten [Kes80] in 1980 that pc(2) = 1/2, and by Harris
[Har60] in 1960 that the media is not porous at criticality (p = 1/2). For a proof of these results
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Chapter 1. Preamble

and many others, we refer to Grimmett’s book [Gri99]. Indeed, percolation has been intensively
studied since the 60’s, and is still a very active field of research. In particular the understanding
of the behavior of the model in dimension d = 2 at criticality has been widely improved in the last
two decades thanks to the introduction of tools from complex analysis and the SLE processes - the
interested reader should study Werner’s works for instance. However many questions remain open,
in particular in dimension d = 3. What is the value of pc(3) ? Even a precise conjecture for the
value of pc(3) is missing. Is the media porous at criticality ? It is a major open problem to prove
that the answer is no in dimension 3 also.

We do not develop further the state of the art in percolation since this dissertation does not
focus on this model. However, the model of first passage percolation we study is a refinement of
percolation. As we will see phase transitions also occur in first passage percolation, and they are
linked with phase transitions for underlying percolation models.

1.1.2 First passage percolation

First passage percolation was introduced by Hammersley and Welsh [HW65] in 1965. Consider a
piece of rock. Percolation is a model to understand if the rock is porous, i.e., if water can flow
through it. First passage percolation is a model to understand at which speed water can flow
through it. We still suppose that the water can flow through microscopic tubes inside the rock
that are the edges E of a given graph G = (V,E), that will be (Zd,Ed) in our study. Now we
associate with the edges of the graph a family of i.i.d. random variables (t(e), e ∈ E) where t(e) is
non-negative, and we interpret t(e) as the time that water needs to cross the edge e. The variable
t(e) is called the passage time of e. We call path an alternative sequence (v0, e1, v1, . . . , en, vn) of
vertices (vi)0≤i≤n and edges (ei)1≤i≤n such that the vertices vi−1 and vi are the endpoints of the
edge ei for i ∈ {1, . . . , n}. If γ is a path, we define the passage time of γ as T (γ) =

∑
e∈γ t(e). Then

the passage time between two points x and y in Zd is given by

T (x, y) = inf{T (γ) : γ is a path from x to y} .

This defines a random pseudo-distance on Zd (the only property that can be missing is the separation
property). The firsts questions we can ask are the following.

• If water is injected at the origin of the graph at time 0, how long does it take for the water to
wet a point x far away from the origin, i.e., how does T (0, x) behave for large x ?

• If water is injected at the origin of the graph at time 0, how is growing the set of wet points
in the rock asymptotically, i.e., what is the behavior of {x ∈ Zd : T (0, x) ≤ t} for large t ?

A partial state of the art concerning these questions is given in section 1.2.1, and some new answers
are proposed in Chapter 5.

In the context of the study of porous media, the variable t(e) associated with an edge e, i.e.,
with a microscopic tube inside the rock, can be interpreted differently as the maximal amount of
water that can cross e per second. We call it the capacity of the edge e. This interpretation leads
naturally to the study of the maximal flow through a piece of rock. This maximal flow corresponds
to the maximal amount of water that can cross the piece of rock per second from its top to its
bottom for instance, and is defined rigorously in Section 1.2.2, where a quite general state of the
art is also given. The study of maximal flows is the purpose of Chapters 2, 3 and 4. We want
to underline the fact that first passage percolation is a toy model to understand maximal flows
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1.2. State of the art in first passage percolation

through porous media. The limitation of the flow through an edge by a fixed capacity may not
seem physically relevant. Alternatively, the graph G can also be seen as a communication network,
where each edge e is a communication channel that cannot transmit more informations per second
than a given limit t(e).

We want to mention a third possible interpretation of t(e) : e is a wire whose electrical conduc-
tance is given by t(e). One can study the behavior of the effective electrical resistance of a large
subset of the graph G. This interpretation leads also to many interesting mathematical problems.
However, we do not discuss it in the rest of this dissertation.

1.2 State of the art in first passage percolation

1.2.1 Random distance

Time constant and shape theorem

The random distance in first passage percolation has been and is still intensively studied. A reference
work is Kesten’s lecture notes [Kes86]. We refer also to Howard’s review [How04]. Grimmett and
Kesten [GK12] gives an overview on recent advances in this field. Auffinger, Damron and Hanson
wrote very recently the survey [ADH15] that provides an overview on results obtained in the 80’s
and 90’s, describes the recent advances and gives a collection of old and new open questions. From
now on, we restrict ourselves to the study of first passage percolation on the graph (Zd,Ed) for a
dimension d ≥ 2.

Given a probability measure F on R+, we equip the graph (Zd,Ed) with a i.i.d. family (t(e), e ∈
Ed) of random variables of common distribution F . The variable t(e) is interpreted here as the
passage time of e, thus we define for any path γ its passage time T (γ) =

∑
e∈γ t(e), and we define

the random pseudo-metric T on Zd as

∀x, y ,∈ Zd T (x, y) = inf{T (γ) : γ is a path from x to y} .

The variable T (x, y) is the minimum time needed to go from x to y. A central object in the study
of first passage percolation is the set of points reached from the origin 0 of the graph within a time
t ∈ R+:

Bv
t = {z ∈ Zd |T (0, z) ≤ t} .

The exponent v indicates that Bv
t is a set of vertices. It may be useful to consider a fattened set

Bt by adding a small unit cube around each point of Bv
t , i.e., to define the following random set:

∀t ∈ R+ , Bt = {z + u | z ∈ Zd s.t. T (0, z) ≤ t , u ∈ [−1/2, 1/2]d} .

Fix e1 = (1, 0, . . . , 0). Thanks to a subadditive argument, Hammersley and Welsh [HW65] and
Kingman [Kin68] proved that if d = 2 and F has finite mean, then limn→∞ T (0, ne1)/n exists a.s.
and in L1, the limit is a constant denoted by µ(e1) and called the time constant. The moment con-
dition was improved some years later by several people independently, and the study was extended
to any dimension d ≥ 2 (see for instance Kesten’s St Flour notes [Kes86]). The convergence to the
time constant can be stated as follows.

Theorem 2 (Definition of the time constant). If E[min(t1, . . . , t2d)] <∞ where (ti) are i.i.d. with
distribution F , there exists a constant µ(e1) ∈ R+ such that

lim
n→∞

T (0, ne1)

n
= µ(e1) a.s. and in L1 .
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Chapter 1. Preamble

Moreover, the condition E[min(t1, . . . , t2d)] <∞ is necessary for this convergence to hold a.s. or in
L1.

This convergence can be generalized by the same arguments, and under the same hypothesis, to
rational directions : there exists an homogeneous function µ : Qd → R+ such that for all x ∈ Zd, we
have limn→∞ T (0, nx)/n = µ(x) a.s. and in L1. The function µ can be extended to Rd by continuity
(see [Kes86]). A simple convexity argument proves that either µ(x) = 0 for all x ∈ Rd, or µ(x) > 0
for all x 6= 0. Kesten [Kes86] proved the following result on the positivity of the time constant.

Theorem 3 (Positivity of the time constant). If E[min(t1, . . . , t2d)] <∞, thus µ(e1) is well defined,
then µ(e1) > 0 if and only if F ({0}) < pc(d), i.e., if and only if the percolation (1{t(e)=0}, e ∈ Ed) is
subcritical.

If F ({0}) < pc(d), µ is a norm on Rd, and the unit ball for this norm

Bµ = {x ∈ Rd |µ(x) ≤ 1}

is compact. A natural question at this stage is whether the convergence limn→∞ T (0, nx)/n = µ(x)
is uniform in all directions. The shape theorem, inspired by Richardson’s work [Ric73], answers
positively this question under a stronger moment condition. It can be stated as follows (see Cox
and Durrett [CD81] in dimension d = 2 and Kesten [Kes86] in higher dimension).

Theorem 4 (Shape theorem). If E[min(td1, . . . , t
d
2d)] <∞ where (ti) are i.i.d. with distribution F ,

and if F ({0}) < pc(d), then for all ε > 0, a.s., there exists t0 ∈ R+ such that

∀t ≥ t0 , (1− ε)Bµ ⊂
Bt
t
⊂ (1 + ε)Bµ . (1.1)

Moreover, the condition E[min(td1, . . . , t
d
2d)] <∞ is necessary for this convergence to hold a.s.

An equivalent shape theorem can be stated when F ({0}) ≥ pc(d), but the "shape" appearing in
this case is Rd itself.

Generalizations

A first direction in which these results can be extended is by considering a law F on [0,+∞[ which
does not satisfy any moment condition, at the price of obtaining weaker convergences. This work
was performed successfully by Cox and Durrett [CD81] in dimension d = 2 and then by Kesten
[Kes86] in any dimension d ≥ 2. More precisely, they proved that there always exists a function
µ̂ : Rd → R+ such that for all x ∈ Zd, we have limn→∞ T (0, nx)/n = µ̂(x) in probability. If
E[min(t1, . . . , t2d)] < ∞ then µ̂ = µ. The function µ̂ is built as the a.s. limit of a more regular
sequence of times T̂ (0, nx)/n that we now describe roughly. They consider a M ∈ R+ large enough
so that F ([0,M ]) is very close to 1. Thus the percolation (1{t(e)≤M}, e ∈ Ed) is highly supercritical,
so if we denote by CM its infinite cluster, each point x ∈ Zd is a.s. surrounded by a small contour
S(x) ⊂ CM . They define T̂ (x, y) = T (S(x), S(y)) for x, y ∈ Zd. The times T̂ (0, x) have good
moment properties, thus µ̂(x) can be defined as the a.s. and L1 limit of T̂ (0, nx)/n for all x ∈ Zd by
a classical subadditive argument; then µ̂ can be extended to Qd by homogeneity, and finally to Rd
by continuity. The convergence of T (0, nx)/n towards µ̂(x) in probability is a consequence of the
fact that T and T̂ are close enough. Kesten’s result on the positivity of the time constant, Theorem
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1.2. State of the art in first passage percolation

3, remains valid for µ̂. Moreover, Cox and Durrett [CD81] and Kesten [Kes86] proved an a.s. shape
theorem for

B̂t = {z + u | z ∈ Zd s.t. T̂ (0, z) ≤ t , u ∈ [−1/2, 1/2]d}

with shape limit Bµ̂ = {x ∈ Rd | µ̂(x) ≤ 1} when µ̂ is a norm, i.e., when F ({0}) < pc(d) (and an
equivalent shape result with shape limit equal to Bµ̂ = Rd when F ({0}) ≥ pc(d)). In dimension
d = 2, Cox and Durrett [CD81] also deduced a weak shape theorem for Bt:

∀K ∈ R+ , lim
t→∞
L2
ÅÅ

Bt
t
4Bµ̂

ã
∩ {x ∈ Rd | ‖x‖1 ≤ K}

ã
= 0 a.s. , (1.2)

where L2 denotes the Lebesgue measure in R2 and 4 denotes the symmetric difference between two
sets, and

∀ε > 0 , a.s. , ∃t0 ∈ R+ , ∀t ≥ t0
Bt
t
⊂ Bµ . (1.3)

In fact, in the case F ({0}) < pc(d), the intersection with {x ∈ Rd | ‖x‖1 ≤ K} is not needed in (1.2),
since Bµ̂ is compact. The inclusion in (1.3) follows directly from the a.s. shape theorem for B̂t since
T̂ (0, x) ≤ T (0, x) for all x ∈ Zd. Kesten did not write the generalization to any dimension d ≥ 2
of this weak shape theorem for Bt without moment condition on F but all the required ingredients
are present in [Kes86].

A second direction in which these results can be extended is by considering random passage times
(t(e), e ∈ Ed) that are not i.i.d. but only stationary and ergodic. Boivin [Boi90] defined a time
constant in this case and proved a corresponding shape theorem under some moment assumptions
on F . We do not present these results in details since this generalization is not directly linked with
our works.

A third possible way to generalize these results is to consider infinite passage time. This case
has been studied by Garet and Marchand [GM04]. They present it as a model of first passage
percolation in random environment: they consider first a supercritical Bernoulli percolation on Ed,
and then they associate with each remaining edge e a finite passage time t(e) such that the family
(t(e), e ∈ Ed) is stationary and ergodic. If x and y are two vertices that do not belong to the same
cluster of the Bernoulli percolation, there is no path from x to y and T (x, y) = +∞. To define
a time constant µ′(x) in a rational direction x, they first consider the probability P conditioned
by the event {0 ∈ C∞}, where C∞ is the infinite cluster of the supercritical percolation mentioned
above. In the direction of x they only take into account the points (xn)n∈N that belong to C∞, with
limn→∞ ‖xn‖1 = ∞. Then under a moment condition on the law of the passage times, they prove
that P-a.s., the times T (0, xn) properly rescaled converge to a constant µ′(x). They also prove a
shape theorem for Bt when µ′ is a norm (i.e., when µ′(e1) > 0):

lim
t→∞
DH
Å
Bt
t
,Bµ′

ã
= 0 P-a.s. ,

where DH denotes the Hausdorff distance between two sets, and Bµ′ = {x ∈ Rd |µ′(x) ≤ 1}. Let us
remark that the infinite cluster C∞ has holes, and so does the set Bt, thus a shape theorem as stated
in (1.1) cannot hold. The use of the Hausdorff distance allows to fill the small holes in Bt. Garet and
Marchand’s results are all the more general since they did not consider i.i.d. passage times but the
ergodic stationary case as in Boivin [Boi90]. However, their moment condition on the finite passage
times is quite restrictive. In the i.i.d. case, the existence of µ′ is proved with a moment of order
2 + ε, and the shape theorem is proved with a moment of order 2(d2 + 2d− 1) + ε. We emphasize
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Chapter 1. Preamble

that these hypotheses are of course fulfilled if the finite passage times are bounded, which is the case
in particular if the finite passage times are equal to 1. In this case T (x, y), x, y ∈ Zd is equal to the
length of the shortest path that links x to y in the percolation model if x and y are connected, and
it is equal to +∞ if x and y are not connected. The variable T (x, y) is called the chemical distance
between x and y and is usually denoted by D(x, y). This chemical distance was previously studied,
see for instance Antal and Pisztora’s article [AP96]. To finish with the presentation of Garet and
Marchand’s works, we should say that the generality of the stationary ergodic setting they chose
makes it also difficult to give a characterization of the positivity of the time constant in terms of
the law of the passage times. Garet and Marchand give sufficient or necessary conditions for the
positivity of µ′, which in the i.i.d. case correspond to:

[F ({0}) > pc(d) ⇒ µ′(e1) = 0] and [F ({0}) < pc(d) ⇒ µ′(e1) > 0] ,

but they do not study the critical case F ({0}) = pc(d).

Continuity

Once the time constant is defined, a natural question is to wonder if it varies continuously with
the distribution of the passage times of the edges. This question has been answered positively by
Cox and Kesten [Cox80, CK81, Kes86]. In this paragraph, we will emphasize the dependance of
the passage times t(e) (resp. the distance T , the time contant µ) on the probability measure F by
denoting it by tF (e) (resp. TF , µF ).

Theorem 5 (Continuity of the time constant). Let F , Fn be probability measures on R+. If Fn
converges weakly towards F , then for every x ∈ Rd,

lim
n→∞

µFn(x) = µF (x) .

Cox [Cox80] proved first this result in dimension d = 2 with an additional hypothesis of uniform
integrability: he supposed that all the probability measures Fn were stochastically dominated by
a probability measure H with finite mean. To remove this hypothesis of uniform integrability in
dimension d = 2, Cox and Kesten [CK81] used the regularized passage times and the technology of
the contours introduced by Cox and Durrett [CD81]. The key step of their proof is the following
lemma.

Lemma 6 (Truncated passage times). Let d = 2. Let F be a probability measure on R+, and let
FK = 1[0,K)F +F ([K,+∞))δK be the distribution of the passage times tF (e) truncated at K. Then
for every x ∈ R2,

lim
K→∞

µFK (x) = µF (x) .

To prove this lemma, they consider a geodesic γ from 0 to a fixed vertex x for the truncated
passage times inf(tF (e),K). When looking at the original passage times tF (e), some edges along
γ may have an arbitrarily large passage time: to recover a path γ′ from 0 to x such that TF (γ′) is
not too large in comparison with TFK (γ), they need to bypass these bad edges. They construct the
bypass of a bad edge e inside the contour S(e) ⊂ CM of the edge e, thus they bound the passage time
of this bypass by M |S(e)| where |S(e)| denotes the cardinality of S(e). Kesten [Kes86] extended
these results to any dimension d ≥ 2.

12



1.2. State of the art in first passage percolation

Other directions

A lot more was proved concerning the random distance in first passage percolation, and many works
are in progress. We have no hope to be exhaustive here, so we refer to Grimmett and Kesten [GK12]
and Auffinger, Damron and Hanson [ADH15] for more informations. We try to give just an idea of
the directions in which research is active:

• properties of the limit shape Bµ (strict convexity of µ, link between the probability measure
F and the corresponding shape Bµ...)

• fluctuations and concentration of T (0, x) (study of Var(T (0, x)), large deviations...)

• geodesics (existence and properties of infinite geodesics, wandering exponent, link with Buse-
mann functions...)

• first passage percolation as a competition model (competition with same or different speed,
competition interface...).

We chose to present in this dissertation only the results on which we rely in this dissertation (see
Section 5).

1.2.2 Maximal flow

Maximal stream and minimal cutset

The study of maximal flows in first passage percolation on Zd has been initiated by Grimmett
and Kesten [GK84] in 1984 in dimension 2 and Kesten [Kes87] in 1987 in higher dimension. This
interpretation of the model of first passage percolation has been a lot less studied than the one in
terms of random distance we discussed in Section 1.2.1. One of the reason is the added difficulty
to deal with this interpretation, in which the study of the random paths that are the geodesics is
replaced by the study of some random hypersurfaces that we present in this section.

As previously, given a probability measure F on R+, we equip the graph (Zd,Ed) with a i.i.d.
family (t(e), e ∈ Ed) of random variables of common distribution F . The variable t(e) is now
interpreted as the maximal amount of water that can cross the edge e par second. Consider a finite
subset Ω of the graph (or a bounded subset of Rd that we intersect with (Zd,Ed) to obtain a finite
graph), which represents the piece of rock through which the water flows, and let Γ1 and Γ2 be
two disjoint subsets of vertices in Ω: Γ1 (resp. Γ2) represents the sources (resp. the sinks) through
which the water can enter in (resp. escapes from) Ω. A possible stream inside Ω between Γ1 and
Γ2 is a function ~f : Ed 7→ Rd such that for all e ∈ Ed,

• ‖~f(e)‖2 is the amount of water that flows through e per second,

• ~f(e)/‖~f(e)‖2 is the direction in which the water flows through e.

For instance, if the endpoints of e are the vertices x and y, which are at Euclidean distance 1, then
~f(e)/‖~f(e)‖2 can be either the unit vector ~xy or the unit vector ~yx. A stream ~f inside Ω between
Γ1 and Γ2 is admissible if and only if it satisfies the following constraints :

• the node law: for every vertex x in Ω r (Γ1 ∩ Γ2), we have∑
y∈Zd : e=(x,y)∈Ed∩Ω

‖~f(e)‖2
(
1~f(e)/‖~f(e)‖2= ~xy

− 1~f(e)/‖~f(e)‖2= ~yx

)
= 0 ,

13



Chapter 1. Preamble

i.e., there is no loss of fluid inside Ω;

• the capacity constraint: for every edge e in Ω, we have

0 ≤ ‖~f(e)‖2 ≤ t(e) ,

i.e., the amount of water that flows through e per second cannot exceed its capacity t(e).

Since the capacities are random, the set of admissible streams inside Ω between Γ1 and Γ2 is also
random. With each such admissible stream ~f , we associate its flow defined by

flow(~f) =
∑
x∈Γ1

∑
y∈ΩrΓ1 : e=(x,y)∈Ed

‖~f(e)‖2
(
1~f(e)/‖~f(e)‖2= ~xy

− 1~f(e)/‖~f(e)‖2= ~yx

)
.

This is the amount of water that enters in Ω through Γ1 per second (we count it negatively if the
water escapes from Ω). By the node law, equivalently, flow(~f) is equal to the amount of water that
escapes from Ω through Γ2 per second:

flow(~f) =
∑
x∈Γ2

∑
y∈ΩrΓ2 : e=(x,y)∈Ed

‖~f(e)‖2
(
1~f(e)/‖~f(e)‖2= ~yx

− 1~f(e)/‖~f(e)‖2= ~xy

)
.

The maximal flow from Γ1 to Γ2 in Ω, denoted by φ(Γ1 → Γ2 in Ω), is the supremum of the flows
of all admissible streams through Ω:

φ(Γ1 → Γ2 in Ω) = sup{flow(~f) : ~f is an admissible inside Ω between Γ1 and Γ2} .

The maximal flow through large domains Ω is the first object to study. If it exists, one can also
want to study a maximal stream, i.e., an admissible stream whose flow is maximal and thus equal
to φ(Γ1 → Γ2 in Ω).

It is not so easy to deal with admissible streams, but hopefully there is an alternative description
of maximal flows we can work with. We say that a set of edges E ⊂ Ω cuts Γ1 from Γ2 in Ω (or is a
cutset, for short) if there is no path from Γ1 to Γ2 in ΩrE. We associate with any set of edges E its
capacity T (E) defined by T (E) =

∑
e∈E t(e). The max-flow min-cut theorem (see [Bol79, Ful75]),

a result of graph theory, states that

φ(Γ1 → Γ2 in Ω) = inf{T (E) : E cuts Γ1 from Γ2 in Ω} .

The idea of this theorem is quite intuitive: the maximal flow is limited by edges that are jammed,
i.e., that are crossed by an amount of water per second which is equal to their capacities. These
jammed edges form a cutset, otherwise there would be a path of edges from Γ1 to Γ2 through which
a higher amount of water could circulate. Finally, some of the jammed edges may not limit the flow
since other edges, before or after them on the trajectory of water, already limit the flow, thus the
maximal flow is given by the minimal capacity of a cutset. A third object of interest is a minimal
cutset, i.e., a cutset with minimal capacity.

If the distribution F of the capacities of the edges is a Bernoulli law, the maximal flow φ(Γ1 →
Γ2 in Ω) is simply the maximal number of disjoint open paths from Γ1 to Γ2 in Ω, where a path
is open if all its edges have capacity 1 (as in the percolation setting) and two paths are disjoint if
they share no common edge. By the max-flow min-cut theorem, φ(Γ1 → Γ2 in Ω) is also equal to

14



1.2. State of the art in first passage percolation

the minimal number of edges that have to be deleted to disconnect completely Γ1 from Γ2 in the
subgraph of Ω made of the open edges.

Kesten [Kes87] presented this interpretation of first passage percolation as a higher dimensional
version of classical first passage percolation. To understand this point of view, let us associate with
each edge e a small plaquette e∗, i.e., a (d− 1)-dimensional hypersquare whose sides have length 1,
are parallel to the edges of the graph, such that e∗ is normal to e and cuts e in its middle (see Figure
1.1). We associate with the plaquette e∗ the capacity t(e) of the edge e to which it corresponds.

e∗

e

Ω

dual of a custset

the bottom Γ2 of Ω
between the top Γ1 and

Γ1

Γ2

Figure 1.1: Plaquette and cutset.

With a set of edges E we associate the set of the corresponding plaquettes E∗ = {e∗ : e ∈ E}.
Roughly speaking, if E cuts Γ1 from Γ2 in Ω then E∗ is a "surface" of plaquettes that disconnects Γ1

from Γ2 in Ω - we do not try to give a rigorous definition of the term surface here, but the reader can
look Figure 1.1 to fix ideas. The study of maximal flows in first passage percolation is equivalent,
through the max-flow min-cut theorem, to the study of the minimal capacities of cutsets. When we
compare this to the classical interpretation of first passage percolation, the study of geodescis (i.e.,
paths of dimension 1) is replaced by the study of minimal cutsets (i.e., hypersurfaces of dimension
d − 1). In this sense, the study of maximal flow is a higher dimensional version of classical first
passage percolation.

A few more should be said about dimension d = 2, where we can use the notion of duality
of planar graphs. The graph (Z2,E2) is self-dual, up to a translation of vector (1/2, 1/2). The
plaquette e∗ associated with an edge e ∈ E2 is simply the dual edge of e, thus the dual of a custset
E is a random object of dimension 1, exactly as geodesics are. Let us consider a precise example to
fix ideas. We consider Ω = [k1, k2]× [k3, k4] a rectangle in Z2 (ki ∈ Z for i ∈ {1, . . . , 4}, k1 < k2 and
k3 < k4), Γ1 = {(i, k4) : i ∈ {k1, . . . , k2}} its top and Γ2 = {(i, k3) : i ∈ {k1, . . . , k2}} its bottom.
Then consider a cutset E inside Ω, and remove from E any edge e which is unnecessary, i.e., such
that E r {e} is still a cutset. Then E∗ is exactly a path from the left side to the right side of
Ω∗ = [k1−1/2, k2 +1/2]× [k3 +1/2, k4−1/2], the dual rectangle of Ω (see Figure 1.2). This implies
that the maximal flow φ(Γ1 → Γ2 in Ω) in this setting is equal to the minimal capacity of a left-right
path in Ω∗ in the dual graph. If the capacities of the dual edges are interpreted as passage times,
then maximal flows in the initial graph correspond to minimal passage times in the dual graph, thus
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graph (Z2,E2)

Ω

Ω∗

the top and the
bottom of Ω

cutset E between

path E∗ from
the left side to the
right side of Ω∗

Figure 1.2: Dimension two and duality.

the two interpretations of first passage percolation lead to the study of the same objects. However,
this correspondance does not hold anymore in dimension d ≥ 3. Except in Sections 2.4 and 3.2,
all the results we present about first passage percolation in this dissertation hold for any dimension
d ≥ 2. In all likelihood, many of them could be proved more easily in dimension d = 2, but our
goal is to study the model in dimension 3 or more. An exception is made in Sections 2.4 and 3.2
where we study specifically maximal flows in dimension 2, using precisely arguments that hold only
in dimension 2 to get more informations than in higher dimensions.

Maximal flow through cylinders : the subadditive case

We consider a general dimension d ≥ 3. We now define two specific maximal flows through cylinders
that are of particular interest. Let A be a non-degenerate hypersquare, i.e., a rectangle of dimension
d − 1 in Rd. Let ~v be one of the two unit vectors normal to A. For a positive real h, denote by
cyl(A, h) the cylinder of basis A and height 2h defined by

cyl(A, h) = {x+ t~v : x ∈ A , t ∈ [−h, h]} .

Let B1(A, h) (resp. B2(A, h)) be (a discrete version of) the top (resp. the bottom) of this cylinder,
more precisely defined by

B1(A, h) = {x ∈ Zd ∩ cyl(A, h) : ∃y /∈ cyl(A, h) , (x, y) ∈ Ed and (xy) intersects A+ h~v} ,
B2(A, h) = {x ∈ Zd ∩ cyl(A, h) : ∃y /∈ cyl(A, h) , (x, y) ∈ Ed and (xy) intersects A− h~v} .

We denote by φ(A, h) the maximal flow from the top to the bottom of the cylinder cyl(A, h) in the
direction ~v, defined by

φ(A, h) = φ(B1(A, h)→ B2(A, h) in cyl(A, h)) .

The maximal flow φ(A, h) is the maximal flow through cylinders we want to study - if cyl(A, h) is a
layer of rock, φ(A, h) corresponds to the amount of water that can cross the piece of rock from its
top to its bottom per second. We denote by Hd−1 the Hausdorff measure in dimension d − 1: for
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1.2. State of the art in first passage percolation

A =
∏d−1
i=1 [ki, li]×{c} with ki < li, c ∈ Z, we have Hd−1(A) =

∏d−1
i=1 (li−ki). We expect that φ(A, h)

grows asymptotically linearly in Hd−1(A) when the dimensions of the cylinder goes to infinity, since
Hd−1(A) is the surface of the area through which the water can enter in the cylinder or escapes from
it. However, φ(A, h) is not easy to deal with. Indeed, by the max-flow min-cut theorem, φ(A, h) is
equal to the minimal capacity of a set of edges that cuts B1(A, h) from B2(A, h) in the cylinder.
The dual of this set of edges is a surface of plaquettes whose boundary on the sides of cyl(A, h)
is completely free. This implies that the union of cutsets between the top and the bottom of two
adjacent cylinders is not a cutset itself between the top and the bottom of the union of the two
cylinders. The maximal flow φ(A, h) does not have a property of subadditivity, which is the key
tool in the study of classical first passage percolation. This is the reason why we define another
maximal flow through cyl(A, h), for which subadditivity is recovered. The set cyl(A, h)rA has two
connected components, denoted by C1(A, h) and C2(A, h). For i = 1, 2, we denote by C ′i(A, h) the
discrete boundary of Ci(A, h) defined by

C ′i(A, h) = {x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl(A, h) , (x, y) ∈ Ed} .

We denote by τ(A, h) the maximal flow from the upper half part of the boundary of the cylinder
to its lower half part, i.e.,

τ(A, h) = φ(C ′1(A, h)→ C ′2(A, h) in cyl(A, h))

(see Figure 1.3). By the max-flow min-cut theorem τ(A, h) is equal to the minimal capacity of a set
of edges that cuts C ′1(A, h) from C ′2(A, h) inside the cylinder. To such a cutset E corresponds a dual
set of plaquettes E∗ whose boundary has to be very close to ∂A, the boundary of the hyperrectangle
A. We say that a cylinder is straight if ~v = ~v0 := (0, 0, . . . , 1) and if there exists ki < li, c ∈ Z such
that A = A(~k,~l) =

∏d−1
i=1 [ki, li]× {c}. In this case, for c = 0 and ki ≤ 0 < li, the family of variables

(τ(A(~k,~l), h))~k,~l is subadditive, since the minimal cutsets in adjacent cylinders can be glued together
along the common side of these cylinders (see Figure 1.4). Thus a straightforward application of
ergodic subadditive theorems in the multiparameter case (see Krengel and Pyke [KP87] and Smythe
[Smy76]) leads to the following result.

Lemma 7 (Definition of the asymptotic rescaled flow). Let A = A(~k,~l) =
∏d−1
i=1 [ki, li] × {0} with

ki ≤ 0 < li ∈ Z. Let h : N→ R+ such that limn→∞ h(n) = +∞. Suppose that the distribution F of
the capacities of the edges admits a finite mean, i.e.,

∫
R+ x dF (x) <∞. Then there exists a constant

ν(~v0), that does not depend on A and h, such that

lim
n→∞

τ(nA, h(n))

Hd−1(nA)
= ν(~v0) a.s. and in L1 .

This result has been stated in a slightly different way by Kesten in [Kes87]. He considered there
the more general case of flows through cylinders whose dimensions goes to infinity at different speeds
in each direction, but in dimension d = 3. The constant ν(~v0) obtained here is the equivalent of
the time constant µ(e1) defined in the context of random distances. In dimension d = 2, thanks to
duality, it is easy to see that ν(~v0) = µ(e1).

As suggested by classical first passage percolation, a constant ν(~v) can be defined in any direction
~v ∈ Sd−1. This is not that trivial, since a lack of subadditivity appears when we look at tilted
cylinders, due to the discretization of the boundary of the cylinders. Moreover, classical ergodic
subadditive theorems cannot be used if the direction ~v is not rational, i.e., if there does not exists
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h

v

h

maximal flow τ(A, h)

zone through which
the water escapes

zone through which
the water enters

cylinder cyl(A, h)

maximal flow φ(A, h)

A

Figure 1.3: The cylinder cyl(A, h) and the maximal flows φ(A, h) and τ(A, h).

an integer M such that M~v has integer coordinates. However, it is quite easy to recover at least
the convergence of the expectation of the maximal flows τ through tilted cylinders.

Lemma 8 (Generalization of the definition of the asymptotic rescaled flow). Let A be a non-
degenerate hyperrectangle and ~v a unit vector normal to A. Let h : N→ R+ such that limn→∞ h(n) =
+∞. Suppose that the distribution F of the capacities of the edges admits a finite mean, i.e.,∫
R+ x dF (x) <∞. Then there exists a constant ν(~v), that does not depend on A and h, such that

lim
n→∞

E[τ(nA, h(n))]

Hd−1(nA)
= ν(~v) .

As we will see in Section 2.2, ν(~v) is in fact the limit of the rescaled maximal flows a.s. and
in L1 under additional hypotheses, but these convergences are less obvious to prove. The constant
ν(~v) can be seen as the asymptotic rescaled maximal flow that can flow through the media in the
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1.2. State of the art in first passage percolation

Figure 1.4: Subadditivity of τ in straight cylinders.

direction ~v. It is also the asymptotic rescaled minimal capacity of a unit surface of plaquettes
globally normal to ~v.

Maximal flow through straight cylinders

Kesten [Kes87] studied the maximal flow φ(A, h) from the top to the bottom of a straight cylinder.
Kesten considered cylinders whose sides have lengths that go to infinity at different speeds, but we
present its result only in the particular case of the study of φ(nA, h(n)) where limn→∞ h(n) = +∞.
The main result of [Kes87] is the following.

Theorem 9 (Maximal flow through straight cylinders - first result). Let d = 3. Let A = [0, k] ×
[0, l]× {0} with k, l ∈ N∗. Let h : N→ R+ such that limn→∞ h(n) = +∞.
i) Suppose that F ({0}) < p0 for a fixed p0 ≥ 1/27, and suppose that F admits an exponential
moment:

∃λ > 0 ,

∫
R+
eλx dF (x) < ∞ .

Suppose that there exists δ > 0 satisfying

lim
n→∞

log h(n)

n1−δ = 0 . (1.4)

Then

lim
n→∞

φ(nA, h(n))

H2(nA)
= ν(~v0) > 0 a.s. and in L1 . (1.5)

ii) Suppose that F ({0}) > 1 − pc(3) and F admits a moment of order 6. Suppose that there exists
a constant C <∞ such that

lim inf
n→∞

h(n)

log n
> C .

Then for all n sufficiently large, we have

φ(nA, h(n)) = 0 a.s. .
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Kesten [Kes87] emphasizes the fact that the hypotheses of this theorem are not optimal. He
conjectures that an hypothesis of second moment for F should be sufficient for the convergence (1.5)
to hold. He also conjectures that the condition (1.4) on the height of the cylinder can be improved.
He conjectures that the condition F ({0}) < p0 could be replaced by F ({0}) < 1− pc(3), and thus
that F ({0}) < 1 − pc(3) implies ν(~v0) > 0 and F ({0}) > 1 − pc(3) implies ν(~v0) = 0. As we will
see, Zhang [Zha00, Zha07] answers some of these questions, whereas we give other answers in this
dissertation.

We want to say a few words about Kesten’s proof of the convergence (1.5). As we said previously,
the variable φ(nA, h(n)) is not subadditive, since minimal cutsets corresponding to these flows in
adjacent cylinders cannot be glued together to get a bigger cutset in the union of the cylinders.
The key idea of the proof is the following: instead of looking at all the possible cutsets between the
top and the bottom of a cylinder, we restrict ourselves to cutsets that have a prescribed boundary
condition, i.e., hypersurfaces of plaquettes whose intersection with the vertical faces of the cylinder
is given by a certain curve C. Such a surface of plaquettes can be glued together with a surface of
plaquettes in an adjacent cylinder which has symmetric boundary conditions C∗ (see Figure 1.5).
Thanks to the invariance of the model by symmetries with regards to the hyperplane spanned by

boundary condition C symmetric boundary condition C∗

Figure 1.5: Glueing cutsets having symmetric boundary conditions.

the faces of a straight cylinder, a boundary condition C for a cutset and any symmetric boundary
condition C∗ has the same probability to be satisfied by a minimal cutset in the cylinder. Thus
consider

φC(nA, h(n)) = min{T (E) : E is a cutset in cyl(nA, h(n)) with fixed boundary condition C} ,

where the boundary condition C is chosen such that the probability to observe a minimal cutset with
boundary condition C is maximal. Then by the symmetry arguments we mentioned, φC(nA, h(n))
is a quasi-subadditive object that we can compare to τ(nA, h(n)). Kesten uses the hypothesis
F ({0}) < p0 to control the cardinality of a minimal cutset, and thus the number of possible boundary
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1.2. State of the art in first passage percolation

conditions for the minimal cutsets, in order to compare φC(nA, h(n)) with φ(nA, h(n)). We want
to emphasize that the ideas we give are very rough, and the work of Kesten is in fact a lot more
subtle.

The critical case

One of the questions left open by Kesten is the precise study of the positivity of ν(~v0). Intuitively,
one can think that if the percolation (1t(e)>0, e ∈ Ed) is subcritical, i.e., if F ({0}) > 1 − pc(d),
then water cannot flow through the graph at a macroscopic scale thus ν(~v0) = 0, whereas if the
percolation (1t(e)>0, e ∈ Ed) is supercritical, i.e., if F ({0}) < 1− pc(d), then the opposite happens
and ν(~v0) > 0. Kesten’s work [Kes87] implies that in dimension d = 3, under some moment
conditions, F ({0}) > 1−pc(3) implies ν(~v0) = 0 and F ({0}) < p0 implies ν(~v0) > 0. Zhang [Zha00]
studies the behavior of maximal flows when F ({0}) = 1 − pc(d), i.e., in the critical case. Like
Kesten, Zhang works in dimension d = 3 and considers cylinders whose dimensions go to infinity at
different speed, but we choose to present its result in the same framework as we did for Kesten’s
work. He obtains a general version of the following result.

Theorem 10 (Critical case). Let d = 3. Suppose that F ({0}) = 1 − pc(3) and that F admits a
finite mean ∫

R+
x dF (x) < ∞ .

Let A = [0, k]× [0, l]× {0} with k, l ∈ N∗. Let h : N→ R+ such that limn→∞ h(n) = +∞. Then

lim
n→∞

φ(nA, h(n))

H2(nA)
= lim

n→∞
τ(nA, h(n))

H2(nA)
= 0 a.s. and in L1 ,

We do not give details about the proof of this result, but we add two comments. The first one
is that this proof relies on non trivial percolation properties and is sophisticated. The second one
is that the proof works well in any dimension d ≥ 2, as Zhang [Zha00] noticed it himself.

Bound on the cardinality of a minimal cutset

A more recent work of Zhang [Zha07] states a control on the cardinality of a minimal cutset under
the relevant hypothesis F ({0}) < 1− pc(d) in any dimension d ≥ 2. We choose again to present its
results in the same framework as previously, even if Zhang’s results are more general.

Theorem 11 (Bound on the cardinality of a minimal cutset). Let A =
∏d−1
i=1 [ki, li] × {0} with

ki ≤ 0 < li ∈ Z. Let h : N→ R+ such that limn→∞ h(n) = +∞ and log h(n) ≤ Hd−1(nA). Suppose
that F ({0}) < 1− pc(d) and that F admits an exponential moment:

∃λ > 0 ,

∫
R+
eλx dF (x) < ∞ .

Let E(nA, h(n)) be a cutset between the top and the bottom of cyl(nA, h(n)) of minimal capacity, and
of minimal cardinality |E(nA, h(n))| among those custsets. There exists constants β(F, d), n0(F, d)
and Ci(F, d) such that for all n ≥ n0, for every x > βHd−1(nA), we have

P [|E(nA, h(n))| ≥ x] ≤ C1e
−C2x .
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Zhang controls in fact the cardinality of a minimal cutset that cuts any large box from infinity,
and uses this control to obtain Theorem 11. This result allows him to fulfill the gap between the
two regimes F ({0}) < p0 and F ({0}) ≥ 1− pc(d) previously studied, in any dimension d ≥ 2.

Theorem 12 (Maximal flow through straight cylinders - second result). Let A =
∏d−1
i=1 [ki, li]×{0}

with ki ≤ 0 < li ∈ Z. Let h : N → R+ such that limn→∞ h(n) = +∞. Suppose that there exists
δ > 0 satisfying

log h(n) ≤ n1−δ .

Suppose that F admits an exponential moment:

∃λ > 0 ,

∫
R+
eλx dF (x) < ∞ .

Then
lim
n→∞

φ(nA, h(n))

Hd−1(nA)
= ν(~v0) a.s. and in L1 .

Moreover ν(~v0) > 0 if and only if F ({0}) < 1− pc(d).

Zhang’s proof of Theorem 12 relies on the same ideas as Kesten’s proof of Theorem 9. The subad-
ditivity for maximal flow through straight cylinders is recovered by imposing some fixed boundary
conditions to the cutsets he considers, and by gluing together cutsets in adjacent cylinders with
symmetric boundary conditions. Zhang adds mainly two new ingredients. First he uses a con-
centration inequality to reduce the problem to prove the convergence of E[φ(nA, h(n))]/Hd−1(nA),
which simplifies its work. Secondly he uses Theorem 11 to control the cardinality of a cutset, and
thus the number of possible boundary conditions for cutsets in a cylinder, under the hypothesis
F ({0}) < 1− pc(d) instead of the (technical but not relevant) condition F ({0}) < p0 that appeared
in Kesten’s Theorem 9.

The major contribution of [Zha07] is thus Theorem 11. We try to give a glimpse on the arguments
involved. Consider a minimal cutset E of minimal cardinality that cuts a box D from infinity. Fix
a η > 0 very small. If F ((0, η]) is small enough, we can control the number of edges e ∈ E such that
t(e) ∈ (0, η]. The number of edges e ∈ E such that t(e) > η is bounded by T (E)/η, thus can be
controlled too. The hard part is to bound the number of edges of capacity equal to 0. It reduces to
the study of properties of the percolation (1t(e)>0, e ∈ Ed). Up to flipping to 0 the capacities of all
the edges of E, it is the case that the connected component of open edges connected to the box D is
finite, thus its boundary is a cutset itself between D and infinity. Zhang regularizes this boundary,
which is too tangled, by a rescaling argument. Then, using percolation estimates, he controls the
cardinality of this regularized boundary, and obtains this way an upper bound on the cardinality of
E which was supposed to be minimal.

Other directions

We want to mention two others works on maximal flows or minimal cutsets in first passage perco-
lation. Boivin [Boi90] extends the study of minimal cutsets to the case of ergodic and stationary
capacities instead of i.i.d. capacities. In dimension d = 3, he proves the convergence of the rescaled
minimal capacity of cutsets that are not constrained to stay inside a cylinder but must have a
boundary equals to a deterministic curve C included in a plane. Moreover, he gives some necessary
and sufficient moment conditions on the distribution of the capacities for this convergence to hold
uniformly in all directions, moment conditions that depend on the regularity of the curve C.
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1.3. Related models

Garet [Gar06] studies the maximal flow in dimension d = 2 from a convex bounded subset A of
R2 to infinity. He proves that the asymptotic rescaled maximal flow, when the dimensions of A go
to infinity, behaves like

capacont(A) =

∫
∂∗A

ν(~vA(x))dH2(x) ,

where ~vA(x) a the exterior unit vector normal to A at x and ∂∗A is the subset of A where such
a normal vector exists. He also obtains large deviation estimates for this maximal flow. Garet’s
proof relies heavily on the fact that in dimension d = 2, minimal cutsets are geodesics in the dual
graph. We do not get into the details of this proof. However, we want to say a few words about
the limit capacont(A) appearing here. We recall that ν(~v) can be interpreted as the asymptotic
rescaled minimal capacity of a unit surface globally normal to ~v. The limit capacont(A) can thus be
interpreted as the continuous capacity of the surface ∂∗(A). Moreover, Garet needs to prove that

capacont(A) = inf{capacont(A′) : A ⊂ A′ , A′ is polygonal} .

The limit of the rescaled maximal flows is thus the solution of a variational problem. These ideas
will be used again in this dissertation, see Section 2.4 and Chapter 4.

We finish here our quick scan of the results concerning maximal flows in first passage percolation.
We are not exhaustive, one could cite for instance previous related works of Aizenman, Chayes,
Chayes, Fröhlich and Russo [ACC+83], but a lot less is missing than concerning the random distance
in first passage percolation since maximal flows have been a lot less studied.

1.3 Related models

This dissertation, as indicated by its title, mainly deals with first passage percolation. However, two
other models or objects will appear in Section 5.3. Indeed, the study of first passage percolation is
interesting in itself, but it is also a laboratory in which we develop techniques that can be used to
understand other models.

1.3.1 Cheeger constant

For a finite graph G = (V,E), the isoperimetric constant ϕG is defined as

ϕG = min

®
|∂A|
|A|

: A ⊂ V , 0 < |A| ≤ |V |
2

´
,

where ∂A is the edge boundary of A, ∂A = {e = (x, y) ∈ E : x ∈ A, y /∈ A}, and |B| denotes as
previously the cardinality of the finite set B.

For a dimension d ≥ 2, let p ∈ (pc(d), 1] and denote by Cp the a.s. unique infinite cluster of
the i.i.d. bound Bernoulli percolation of parameter p on (Zd,Ed). We consider the isoperimetric
constant ϕn(p) of Cp ∩ [−n, n]d, the intersection of this infinite cluster with the box [−n, n]d:

ϕn(p) = min

®
|∂A|
|A|

: A ⊂ Cp ∩ [−n, n]d, 0 < |A| ≤ |Cp ∩ [−n, n]d|
2

´
.

In several papers (e.g. [BM03, MR04, Pet08, BBHK08]), it was shown that there exist constants
c, C > 0 such that c < nϕn(p) < C, with probability tending rapidly to 1. This led Benjamini

23



Chapter 1. Preamble

Figure 1.6: A right most path.

to conjecture the existence of limn→+∞ nϕn(p). Rosenthal and Procaccia [PR11] proved that the
variance of nϕn(p) is smaller than Cn2−d, which implies that nϕn(p) is concentrated around its
mean for d ≥ 3. Biskup, Louidor, Procaccia and Rosenthal [BLPR12] proved the existence of
limn→+∞ nϕn(p) for d = 2. This constant is called the Cheeger constant. In addition, a shape
theorem was obtained: any set yielding the isoperimetric constant converges in the Hausdorff metric
to the normalized Wulff shape Ŵp, with respect to a specific norm given in an implicit form, see
Theorem 15 below. For additional background and a wider introduction on Wulff construction in
this context, the reader is referred to [BLPR12].

In dimension d = 2, the Cheeger constant can also be represented as the solution of a continuous
isoperimetric problem with respect to some norm. To define this norm, we first require some
definitions. For a path r = (v0, e1, . . . , en, vn), and i ∈ {2, . . . , n− 1}, an edge e = (vi, z) is said to
be a right-boundary edge if z is a neighbor of vi between vi+1 and vi−1 in the clockwise direction.
The right boundary ∂+r of r is the set of its right-boundary edges. A path is called right-most if
it uses every edge at most once in every orientation and it doesn’t contain right-boundary edges.
See Figure 1.6; the solid lines represent the path, dashed lines represent the right-boundary edges,
and the curly line is a path in the medial graph which shows the orientation (see [BLPR12] for a
thorough discussion). For x, y ∈ Z2, let R(x, y) be the set of right-most paths from x to y. For
a path r ∈ R(x, y), define bp(r) = |{e ∈ ∂+r : e is p-open}|. For x, y ∈ Cp we define the right
boundary distance, bp(x, y) = inf{bp(r) : r ∈ R(x, y), r is p-open}. For any x ∈ R2, define x̃Cp
as the vertex of Cp which minimizes ‖x − x̃Cp‖1, with a deterministic rule to break ties. The next
result, proved in [BLPR12], yields uniform convergence of the right boundary distance to a norm
on R2.

Theorem 13 (Definition of the norm). Let d = 2. For any p > pc(2), there exists a norm βp on R2

such that for any x ∈ R2,

βp(x) = lim
n→∞

bp(0̃
Cp ,›nxCp)
n

a.s. and in L1 .

Moreover, the convergence is uniform on S1 = {x ∈ R2 : ‖x‖2 = 1}.

This convergence is proved by a classical ergodic subadditive theorem. The connection between
the Cheeger constant and the norm βp goes through a continuous isoperimetric problem. For a
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continuous curve λ : [0, 1]→ R2, and a norm ρ, let the ρ-length of λ be

lenρ(λ) = sup
N≥1

sup
0≤t0<...<tN≤1

N∑
i=1

ρ(λ(ti)− λ(ti−1)).

A curve λ is said to be rectifiable if lenρ(λ) <∞ for any norm ρ. A curve λ is called a Jordan curve
if λ is rectifiable, λ(0) = λ(1) and λ is injective on [0, 1). For any Jordan curve λ, we can define its
interior int(λ) as the unique finite component of R2 rλ([0, 1]). Denote by L2 the Lebesgue measure
on R2, and by θp the density of Cp, i.e., θp = P(0 ∈ Cp). As proved in [BLPR12], the Cheeger
constant can be represented as the solution of the following continuous isoperimetric problem.

Theorem 14 (Continuous isoperimetric problem). Let d = 2. For every p > pc(2),

lim
n→+∞

nϕn(p) = (
√

2 θp)
−1 inf{lenβp(λ) : λ is a Jordan curve,L2(int(λ)) = 1}.

Moreover Biskup, Louidor, Procaccia and Rosenthal [BLPR12] obtain a limiting shape for the
sets that achieve the minimum in the definition of ϕn(p). This limiting shape is given by the Wulff
construction [Wul01]. Denote by

Wp =
⋂
n̂∈S1
{x ∈ R2 : n̂ · x ≤ βp(n̂)} and Ŵp =

Wp»
L2(Wp)

, (1.6)

where · denotes the Euclidean inner product. The set Ŵp is a minimizer for the isoperimetric
problem associated with the norm βp, and it gives the asymptotic shape of the minimizer sets in the
definition of ϕn(p). Denote by Un(p) be the set of minimizers of ϕn(p), and by dH the Hausdorff
distance between non-empty compact sets; then it is stated in [BLPR12] that the following holds.

Theorem 15 (Shape theorem for the minimizers). Let d = 2. For every p > pc(2),

lim
n→∞

max
U∈Un(p)

inf
ξ∈R2

dH

Å
U

n
, ξ +

√
2 Ŵp

ã
= 0 a.s. .

The norm βp, defined via the subadditive ergodic theorem as the rescaled limit of the minimum
of a certain weight among paths, is very similar to the norm µF associated with the distribution F
of passage times in classical first passage percolation. For this reason, some methods used to prove
properties of µF can be used to get the same properties for βp, and thus to recover some properties
of the Cheeger constant limn→+∞ nϕn(p) and the associated Wulff shape Ŵp.

1.3.2 Contact process

The contact process is a famous interacting particle system modeling the spread of an infection on
the sites of Zd. The evolution in time depends on a fixed parameter λ ∈ (0,+∞) and is as follows:
at each moment, an infected site becomes healthy at rate 1 while a healthy site becomes infected at
a rate equal to λ times the number of its infected neighbors. We present the alternative graphical
construction of the contact process proposed by Harris [Har78]. This construction is exposed in all
details in [Har78]; we just give here an informal description. Independently, we associate with each
edge e ∈ Ed a Poisson point process ωλe on R+ with intensity λ > 0, and we associate with each
vertex z ∈ Zd a Poisson point process ωz on R+ with intensity 1. Above each site z ∈ Zd, we draw
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time

0

Zd

Figure 1.7: Graphical construction of the contact process (the infected region is in bold).

a time line R+, and we put a cross at the times given by ωz, corresponding to potential recoveries
at site z. Above each edge e ∈ Ed, we draw at the times given by ωλe an horizontal segment between
the extremities of the edge, corresponding to a potential infection through the edge e (see Figure
1.7).

An open path is a connected oriented path which moves along the time line in the increasing
time direction without passing a cross symbol, and along the horizontal segments corresponding to
potential infections. In this description, the evolution of the contact process is a percolation process,
oriented in time but not in space. For x, y ∈ Zd and t ≥ 0, we say that y ∈ ξλ,xt if and only if there
exists an open path from (x, 0) to (y, t), then we define:

∀A ⊂ Zd , ξλ,At =
⋃
x∈A

ξλ,xt . (1.7)

Harris proved that the process (ξλ,At )t≥0 is the contact process with infection rate λ, starting from
initial configuration A.

Thanks to this graphical construction, it is easy to obtain a coupling between contact processes
of different parameters λ and λ′ in a common interval (0, λmax]. Indeed, equip each edge e with
a family (U ei )i≥1 of i.i.d. random variables of uniform distribution on [0, λmax]. Given ωλmax

e , the
Poisson point process of parameter λmax associated with e, construct the process ωλe (resp. ωλ′e ) by
keeping the i-th point of ωλmax

e if and only if U ei ≤ λ/λmax (resp. U ei ≤ λ′/λmax). Finally use the
same Poisson point processes ωz of parameter 1 associated with the vertices z ∈ Zd and apply the
graphical construction of Harris to obtain at the same time the contact processes of parameters λ
and λ′. By construction, we obtain that

(A ⊂ B , λ′ ≤ λ ≤ λmax) ⇒ (∀t ≥ 0 , ξλ
′,A
t ⊂ ξλ,Bt ).
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For a set A ⊂ Zd, we define the life time τAλ of the process starting from A by

τAλ = inf{t ≥ 0 : ξλ,At = ∅}.

With the graphical construction in mind, it is clear that {τ{0}λ = +∞} if and only if there is an
infinite path starting from (0, 0) in the graph that is built from potential infections that are present
at rate λ. Then, it will be often more appealing to write {0 λ↔ ∞} instead of {τ{0}λ = +∞}. The
critical parameter for the contact process in Zd is defined by

λc(Zd) = inf{λ > 0 : P(τ
{0}
λ = +∞) > 0}

= inf{λ > 0 : P(0
λ↔∞) > 0} ∈ (0,+∞).

The fact that λc(Zd) < +∞ is due to Harris [Har74]. By definition, for λ > λc, the infection starting
from the origin infinitely expands with positive probability. Define, for λ > λc(Zd), the following
conditional probability

Pλ(·) = P(·|τ{0}λ = +∞) =
P( · ∩ {0 λ↔∞})

P(0
λ↔∞)

.

For A ⊂ Zd and x ∈ Zd, we also define the first infection time tAλ (x) of site x from set A by

tAλ (x) = inf{t ≥ 0 : x ∈ ξλ,At }.

It follows from Bezuidenhout and Grimmett [BG90] (see also Durrett [Dur91]) that Pλ(tAλ (x) <
+∞) = 1 as soon as A 6= ∅. The set of points infected before time t is then

Hλ
t = {x ∈ Zd : t

{0}
λ (x) ≤ t}

and we define a fattened version of it by

H̃λ
t = {x+ u : x ∈ Hλ

t , u ∈ [−1/2, 1/2]d}.

Combining the works of Durrett and Griffeath [DG82], Bezuidenhout and Grimmett [BG90] and
Durrett [Dur91], it is proved that when the contact process on Zd starting from the origin survives,
the set of sites occupied before time t satisfies an asymptotic shape theorem, as in first passage
percolation. The shape theorem can be stated as follows.

Theorem 16 (Definition of the time constant and shape theorem for the contact process). Suppose
that λ > λc(Zd), then there exists a norm µλ on Rd such that for every x ∈ Zd,

lim
n→∞

t
{0}
λ (nx)

n
= µλ(x) Pλ-a.s. and in L1(Pλ) .

Moreover, for all ε > 0, a.s., there exists t0 ∈ R+ such that

∀t ≥ t0 , (1− ε)Bµλ ⊂
H̃λ
t

t
⊂ (1 + ε)Bµλ

where Bµλ is the unit ball for µλ.
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The growth of the contact process is thus asymptotically linear in time, and governed by the
shape Bµλ. More precisely, Durrett and Griffeath [DG82] proved the shape theorem for the contact
process for large values of λ, using estimates that essential imply that the growth of the contact
process is of linear order. Later, Bezuidenhout and Grimmett [BG90] showed that a supercritical
contact process conditioned to survive growths at least linearly. In their proof, they use a rescaling
argument and a stochastic comparison, at the level of the mesoscopic blocks, with a two-dimensional
supercritical oriented percolation. They also indicated how this could be use to obtain a shape
theorem for the entire supercritical regime by recovering the estimates proved by Durrett and
Griffeath [DG82] in the case of large values of λ. This last step has been done by Durrett [Dur91].
The proof of the shape theorem for contact process is thus divided in two steps : first prove that
the growth of the contact process is of linear order as soon as survival is possible as in [BG90], then
deduce from it a shape theorem as in [DG82, Dur91].

Of course, the study of the contact process is linked to the study of the random distance in
classical first passage percolation by the fact that these two models are random growth models, for
which a shape theorem holds. For this reason, we have hope to transport properties of the random
distance in first passage percolation to the contact process. However, the study of contact process
is more difficult. First passage percolation can be seen as a permanent model, in the sense that if a
vertex z ∈ Zd is wet at time s, it remains wet at any time t ≥ s. The set Bt of wet vertices is thus
nondecreasing and extinction is impossible. Contact process is a non-permanent model: extinction
is possible, the set of infected particules is not monotonic. Following ideas of classical subadditive
theory, if we want to prove that the hitting times t{0}λ (x) are such that t{0}λ (nx)/n converges,
Kingman’s theory requires that the family (t

{0}
λ (x)) has subadditivity, stationarity and integrability

properties. Since extinction is possible, the hitting times may be infinite, thus integrability does not
hold. Moreover, conditioning on the survival of the process can break independence, stationarity
and even subadditivity properties. Instead of subadditivity theory, Durrett and Griffeath [DG82]
and Durrett [Dur91] rely on the theory of superconvolutive distributions to prove the shape theorem
for the contact process.

Since then, a lot more has been proved concerning the contact process. See for instance Liggett’s
book [Lig99] for a review on this model. We could not present here all the known properties of
contact process, thus we just focus on recent advances that will be useful in this dissertation. Garet
and Marchand [GM12] extended the shape theorem to the case of contact process in a random
environment, i.e., when the fixed parameter e is replaced by a stationary and ergodic family (λe)e∈Ed
of random variables, λe giving the infection rate between the extremities of the edge e, under the
assumption that (λe)e∈Ed takes values in [λmin, λmax]E

d where λc(d) < λmin ≤ λmax < +∞. The
key idea of their work is the use of what they call the essential hitting time σ{0}λ (x) for x ∈ Zd

instead of the hitting time t{0}λ (x) - we present here these essential hitting times in the case of a
deterministic environment λ. The time σ{0}λ (x) can bee seen as a regeneration time, at which the
site x is infected and its infection survives. Rather than giving a precise definition, we prefer to
propose an informal description. Consider a point x ∈ Zd and a contact process starting at 0. First
wait for the first time t at which the vertex x is infected. If the infection of origin x at time t
survives, then σ{0}λ (x) = t. If it does not, wait until this infection dies, and then wait again for the
time t′ at which the vertex x is infected again. If the infection of origin x at time t′ survives, then
σ
{0}
λ (x) = t′, otherwise repeat the process again until you find a time with such properties. It is

the case that σ{0}λ (x) <∞ Pλ-a.s.. The essential hitting times have good moment, stationarity and
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almost subadditive properties that the hitting times lack. Garet and Marchand [GM12] proved a
general almost subadditive ergodic theorem that they can apply to essential hitting times, and this
way they define the norm µλ as the limit of the rescaled essential hitting times:

∀x ∈ Zd , lim
n→∞

σ
{0}
λ (nx)

n
= µλ(x) Pλ-a.s. and in L1(Pλ) .

Then they compare the essential hitting time σ{0}λ (x) to the hitting time t{0}λ to prove the convergence
of the rescaled hitting times towards the same limit. For more informations about contact process
in random environment, we refer to [GM12, GM14].

1.4 Structure of the dissertation

Chapters 2, 3 and 4 are devoted to the study of maximal flows, maximal streams and minimal
cutsets in first passage percolation on (Zd,Ed). In Chapter 2 we present results we obtained in
[RT10a, RT10b, RT13, Thé08] concerning the convergence of rescaled maximal flows through cylin-
ders and the lower large deviations of these flows, whereas in Chapter 3 we present results we
obtained in [RT13, Thé07, Thé14] concerning their upper large deviations. These two chapters are
complementary and the results presented therein are intertwined. Chapter 4 deals with the asymp-
totic behavior of maximal flows through very general domain of Rd, and the corresponding maximal
streams and minimal cutsets. A result of convergence of these objects is stated, together with upper
and lower large deviations for the maximal flows, as proved in [CT11a, CT11b, CT11c, CT14a]. This
chapter relies heavily on the two previous ones. Chapter 5 is devoted to the study of the random
distance defined in the classical interpretation of first passage percolation, and two related models.
We present in this chapter a definition of the time constant and state a weak shape theorem for
first passage percolation on the infinite cluster of a supercritical Bernoulli percolation without any
moment condition, and we state the continuity of this time constant with regard to the parameter
of the underlying supercritical percolation and the law of the passage times. We also present two
other results of continuity that are inspired by this first one, namely the continuity of the Cheeger
constant in dimension d = 2 with regard to the parameter of the underlying supercritical perco-
lation, and the continuity of the time constant of the contact process in dimension d ≥ 2. These
results were proved in [CT14b, GMPT15, GMT15]. In Chapter 6 we gather some open questions
we are interested in.

The articles [RT10a, RT10b, RT13] are joint works with Raphaël Rossignol. The articles [CT11a,
CT11b, CT11c, CT14a, CT14b] are joint works with Raphaël Cerf. The article [GMT15] is a
joint work with Olivier Garet and Régine Marchand. The article [GMPT15] is a joint work with
Olivier Garet, Régine Marchand and Eviatar B. Procaccia. I am the single author of the articles
[Thé08, Thé07, Thé14].
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Chapter 2

Maximal flow through cylinders:
convergence and lower large deviations

We gather in this chapter results we obtained concerning the convergence of rescaled maximal flows
through cylinders, and lower large deviations for these maximal flows. As we will see, these two
questions are closely related.

2.1 A first attempt

In this section we present the result proved in [Thé08]. Consider a dimension d ≥ 2, the graph
(Zd,Ed), and associate with the edges of the graph a family of i.i.d. capacities (t(e))e∈Ed of common
distribution F . Let cyl(nA, h(n)) be a straight cylinder in Rd, i.e., the hyperrectangle A is of the
form A =

∏d−1
i=1 [ki, li] × {c} with ki < li ∈ Z and c ∈ Z while the height function h : N → R+

satisfies limn→∞ h(n) = +∞. We study the maximal flow φ(nA, h(n)) from the top to the bottom
of cyl(nA, h(n)). Under some additional assumptions, Kesten and Zhang proved that

lim
n→∞

φ(nA, h(n))

Hd−1(nA)
= ν(~v0) a.s. and in L1

(see Theorems 9 and 12). This implies that for all ε > 0, the probability P[φ(nA, h(n)) ≤ (ν(~v0)−
ε)Hd−1(nA)] goes to 0 when n goes to infinity, and we want to know at what speed. If for instance
F ({0}) > 0, the probability that all the edges that have an endpoint at the basis of the cylinder
have null capacity is of order F ({0})Hd−1(nA), thus the probability that φ(nA, h(n)) is null decays
to 0 at a speed which is at most exponential in nd−1. Our goal is to prove that this is exactly the
right order of decay. However, the approach we follow in [Thé08] does not allow us to prove such a
result. We obtain only the following partial result.

Theorem 17. Suppose that F ({0}) < 1 − pc(d). Let A =
∏d−1
i=1 [ki, li] × {c} with ki < li ∈ Z and

c ∈ Z. Then there exists a constant ε(F, d,A) > 0 and a constant C(d) > 0 such that for all height
function h : N→ R+ satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/nd−1 = 0, we have

∀ε ≤ ε0 , lim inf
n→∞

−1

Hd−1(nA)
logP

î
φ(nA, h(n)) ≤ εHd−1(nA)

ó
≥ C > 0 .
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In fact [Thé08] deals only with the case A = [0, 1]d−1 × {0}, but the proof can be readily
transposed to any straight cylinder.

Even if Theorem 17 is not as good as we want, it supports the conjecture that the lower large
deviations of φ(nA, h(n)) are of surface order, i.e., that the probability that this maximal flow
is abnormally small decays exponentially fast with nd−1. Moreover, it states that the constant
ν(~v0), when it is known to be the limit of the rescaled flows φ(nA, h(n)), is strictly positive when
F ({0}) < 1−pc(d). This result, obtained before Zhang’s Theorem 12, was new, since Kesten proved
in [Kes87] such a positivity only when F ({0}) < p0 for some positive but not relevant p0. Theorem
17 is in fact a generalization of a result obtained by Chayes and Chayes [CC86] when F is a Bernoulli
distribution and under a stronger assumption on the height function h.

The proof of Theorem 17 is based on a coarse graining argument in the spirit of Pisztora
[Pis96]. Choose a positive η > 0 small enough so that F ([0, η)) < 1 − pc(d), thus the percolation
(1t(e)>η, e ∈ Ed) is supercritical. Consider boxes inside the cylinder at a mesoscopic scale. Declare
such a box to be good if the following good event occurs: there exists inside the box a cluster of
edges that are open for the percolation (1t(e)>η, e ∈ Ed) such that this cluster crosses the box (i.e.,
it intersects its 2d sides) and there is no other open cluster inside the box of diameter bigger than
the third of the sidelength of the box. Since the percolation we consider is supercritical, it is well
known (see [Cer06] for instance) that this event is typical, i.e., the probability that a box is good
goes to one when the dimension of the box goes to infinity. Moreover, considering adjacent boxes
that overlap a little, the existence of a path of good boxes at the mesoscopic scale from the top
to the bottom of the cylinder guarantees at the microscopic scale the existence of a path of open
edges, i.e., of edges of capacities bigger than η. The problem boils down to control the number of
disjoint open path of good boxes between the top and the bottom of the box, i.e., to bound the
probability that the maximal flow from top to bottom of a cylinder is small when the distribution
of the capacities is a Bernoulli distribution of parameter p arbitrarily close to 1.

2.2 Subadditive flows

In this section and in Section 2.3, we present the results we proved together with Rapahël Rossignol
in [RT10b]. Let ~v ∈ Sd−1 be a unit vector, A be a non degenerate hyperrectangle in Rd normal to
~v and h : N → R+ be an height function satisfying limn→∞ h(n) = +∞. In this section we study
the maximal flows τ(nA, h(n)), using their quasi-subadditive properties.

The first result we obtain in [RT10b] is the convergence of the mean of these rescaled flows.

Proposition 18. Suppose that F admits a finite mean∫
R+
x dF (x) < ∞ .

For all ~v ∈ Sd−1, there exists a constant ν(~v) (depending also on F and d) such that for every
non degenerate hyperrectangle A in Rd normal to ~v and every function h : N → R+ satisfying
limn→∞ h(n) = +∞, we have

lim
n→∞

E[τ(nA, h(n))]

Hd−1(nA)
= ν(~v) .

The proof of this proposition is not hard, and based on the classical proof of convergence of
subadditive sequences. Consider two integers n ≤ N , and pave the hypersquare NA with translates
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ti(nA) of nA, for i ∈ {1, . . . , Nd−1/nd−1} roughly speaking. Remember that the maximal flow
τ(nA, h(n)) is equal by the max-flow min-cut theorem to the minimal capacity of a cutset whose
boundary is pinned along ∂(nA). Two such cutsets in adjacent cylinders can be glued together up
to adding a small number of edges, thus the following almost subadditive property holds:

τ(NA, h(N)) ≤
Nd−1/nd−1∑

i=1

τ(ti(nA), h(n)) + error term . (2.1)

However, when ~v is not rational, we cannot hope that the translations ti have vectors with integer
coordinates, thus τ(ti(nA), h(n)) does not have the same distribution as τ(nA, h(n)). We can fix
this problem by moving again a little bit each cylinder cyl(ti(nA), h(n)) and improving a little bit
the error term accordingly. From (2.1), we deduce straightforwardly Proposition 18 since the error
term is easy to control in expectation. From (2.1) and Proposition 18, we also deduce immediately
that

lim sup
n→∞

τ(nA, h(n))

Hd−1(nA)
≤ ν(~v) . (2.2)

This follows the first steps of the classical proofs of the subadditive ergodic theorem, see for instance
Durrett [Dur96]. To obtain the convergence of τ(nA, h(n))/Hd−1(nA) towards ν(~v), it remains to
control the deviations of these rescaled flows below their expectations.

At this point, we appeal to concentration estimates to bound these deviations. We use Zhang’s
Theorem 11 to state that with high probability, if F ({0}) < 1−pc(d) (i.e., if ν(~v) > 0) the number of
edges in a minimal cutset for τ(nA, h(n)) has cardinality of order nd−1. Thanks to a concentration
inequality stated by Boucheron, Lugosi and Massart [BLM03], we obtain a control on the lower
large deviations of τ(nA, h(n)) below its mean, thus below Hd−1(nA)ν(~v).

Theorem 19. Suppose that F ({0}) < 1− pc(d) and that F has finite mean∫
R+
x dF (x) < ∞ .

Then for every ε > 0 there exists a positive constant C(d, F, ε) such that for every ~v ∈ Sd−1,
every non-degenerate hyperrectangle A normal to ~v, for every function h : N → R+ satisfying
limn→∞ h(n) = +∞, there exists a constant C̃(d, F,A, h, ε) such that

P
ñ
τ(nA, h(n))

Hd−1(nA)
≤ ν(~v)− ε

ô
≤ C̃e−CH

d−1(nA) .

Combining Proposition 18, Equation (2.2) and Theorem 19, we obtain easily the convergence of
the rescaled maximal flows τ(nA, h(n)) towards ν(~v).

Theorem 20. Suppose that F admits a finite mean∫
R+
x dF (x) < ∞ .

Then for all ~v ∈ Sd−1, for every non degenerate hyperrectangle A in Rd normal to ~v and every
function h : N→ R+ satisfying limn→∞ h(n) = +∞, we have

lim
n→∞

τ(nA, h(n))

Hd−1(nA)
= ν(~v) in L1 . (2.3)
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Moreover, if the origin of the graph belongs to A, or if∫
R+
x1+1/(d−1) dF (x) < ∞ ,

then the convergence (2.3) holds a.s..

We go further into the study of the lower large deviations of τ(nA, h(n)) by proving a corre-
sponding large deviation principle. We define the function I~v on R+ as follows:

I~v(x) = lim
n→∞

−1

Hd−1(nA)
logP

ñ
τ(nA, h(n)) ≤

Ç
x− 1√

n

å
Hd−1(nA)

ô
.

The existence of I~v (that depends only on ~v but not on A nor h) follows from Inequality 2.1. The
term 1/

√
n that appears in the definition of I~v exists to absorb the error term in the subadditivity

of τ . We modify a little bit the function I~v to obtain the rate function J~v mainly by defining
J~v(x) = +∞ if x > ν(~v), and we prove the following large deviation principle.

Theorem 21. Suppose that F ({0}) < 1− pc(d) and

∀λ ∈ R ,
∫
R+
eλx dF (x) < ∞ .

Then for all ~v ∈ Sd−1, for every non degenerate hyperrectangle A in Rd normal to ~v and every
function h : N→ R+ satisfying limn→∞ h(n) = +∞, the sequenceÇ

τ(nA, h(n))

Hd−1(nA)

å
n∈N

satisfies a large deviation principle of speed Hd−1(nA) with the good rate function J~v. Moreover, we
know that J~v is convex on R+, infinite on [0, δ‖v‖1)∪ (ν(~v),+∞) where δ = inf{r : F ([0, r]) > 0},
equal to 0 at ν(~v), and if δ‖v‖1 < ν(~v) we also know that J~v is finite on (δ‖v‖1, ν(~v)], continuous
and strictly decreasing on [δ‖v‖1, ν(~v)] and strictly positive on [δ‖v‖1, ν(~v)).

The positivity of the rate function J~v on [δ‖v‖1, ν(~v)) is a consequence of Theorem 19. The fact
that we define J~v(x) = +∞ if x > ν(~v) is a consequence of the study of the upper large deviations
of τ(nA, h(n)) that will be presented in Chapter 3: the probability that τ(nA, h(n)) is abnormally
big decays strictly faster than e−Cnd−1 for any constant C, at least under the assumption that the
capacities admit exponential moments of all order (which is true for instance if the capacities are
bounded).

2.3 Non subadditive flows: some particular cases in dimension d ≥ 2

2.3.1 Thin cylinders

We go back to the study of the maximal flows φ(nA, h(n)) between the top and the bottom of the
cylinder cyl(nA, h(n)). A first case which is easy to deal with is the case of cylinders that are thin,
in the sense that

lim
n→∞

h(n)

n
= 0 .
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In any cylinder, the following inequalities are true

φ(nA, h(n)) ≤ τ(nA, h(n)) ≤ φ(nA, h(n)) + T (En) (2.4)

where En is the set of edges that are at a fixed small distance ζ of the vertical faces of cyl(nA, h(n))
(i.e., the faces of cyl(nA, h(n)) that are not normal to ~v). Indeed, any cutset in the cylinder
cyl(nA, h(n)) that has fixed boundary conditions pinned at ∂(nA) also cuts the top from the bottom
of the cylinder. Conversely, if you consider a set of edges with free boundary condition that cuts
the top from the bottom of a cylinder, it is enough to add to it all the edges near the vertical faces
of the cylinder to recover a cutset pinned at ∂(nA). In general, Inequality (2.4) does not allow us to
study the asymptotic behavior of φ(nA, h(n)), but it is the case when limn→∞ h(n)/n = 0. In this
case, the cardinality |En| of En, which is of order nd−2h(n), is negligible in comparison with nd−1.
We deduce then from the convergence of E[τ(nA, h(n))]/Hd−1(nA), Proposition 18 above, that the
same result holds for E[φ(nA, h(n))]/Hd−1(nA).

To get more precise informations on the asymptotic behavior of φ(nA, h(n)) in thin cylinders,
we state the same concentration estimate as for τ , using the same method.

Theorem 22. Suppose that F ({0}) < 1− pc(d) and that F has finite mean∫
R+
x dF (x) < ∞ .

Then for every ε > 0 there exists a positive constant C ′(d, F, ε) such that for every ~v ∈ Sd−1,
every non-degenerate hyperrectangle A normal to ~v, for every function h : N → R+ satisfying
limn→∞ h(n) = +∞ and limn→∞ h(n)/n = 0, there exists a constant C̃ ′(d, F,A, h, ε) such that

P
ñ
τ(nA, h(n))

Hd−1(nA)
≤ ν(~v)− ε

ô
≤ C̃ ′e−C

′Hd−1(nA) .

Combining the comparaison (2.4) between φ(nA, h(n)) and τ(nA, h(n)), the convergence of
τ(nA, h(n)), Theorem 20, and the lower large deviations of φ(nA, h(n)) in thin cylinders, Theorem
22, we obtain the convergence of φ(nA, h(n)) in thin cylinders.

Theorem 23. Suppose that F admits a finite mean∫
R+
x dF (x) < ∞ .

Then for all ~v ∈ Sd−1, for every non degenerate hyperrectangle A in Rd normal to ~v and every
function h : N→ R+ satisfying limn→∞ h(n) = +∞ and limn→∞ h(n)/n = 0, we have

lim
n→∞

φ(nA, h(n))

Hd−1(nA)
= ν(~v) in L1 . (2.5)

Moreover, if the origin of the graph belongs to A, or if∫
R+
x1+1/(d−1) dF (x) < ∞ ,

then the convergence (2.5) holds a.s..
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Chapter 2. Maximal flow through cylinders: convergence and lower large deviations

When the distribution F admits an exponential moment, the comparison (2.4) implies that
φ(nA, h(n))/Hd−1(nA) and τ(nA, h(n))/Hd−1(nA) are exponentially equivalent with regard to
nd−1, thus the large deviation principle proved for τ(nA, h(n))/Hd−1(nA) can be transposed to
φ(nA, h(n))/Hd−1(nA):

Theorem 24. Suppose that F ({0}) < 1− pc(d) and

∀λ ∈ R ,
∫
R+
eλx dF (x) < ∞ .

Then for all ~v ∈ Sd−1, for every non degenerate hyperrectangle A in Rd normal to ~v and every
function h : N→ R+ satisfying limn→∞ h(n) = +∞ and limn→∞ h(n)/n = 0, the sequenceÇ

φ(nA, h(n))

Hd−1(nA))

å
n∈N

satisfies a large deviation principle of speed Hd−1(nA) with the same good rate function J~v as in
Theorem 21.

2.3.2 Straight cylinders

The case of straight cylinders has already been studied by Kesten [Kes87] and Zhang [Zha07].
Our contribution is to relax the moment assumption on F required to state the convergence of
φ(nA, h(n))/Hd−1(nA) towards ν(~v0) in straight cylinders and to study the lower large deviations
of these flows. As in the two previous sections, the results we obtain are of three kinds: convergence,
lower large deviations estimates and large deviation principle. We first state these three results
before saying a few words about their proofs. Concerning the convergence of the rescaled maximal
flows, we state the following theorem.

Theorem 25. Suppose that F admits a finite mean∫
R+
x dF (x) < ∞ .

Then for every non degenerate hyperrectangle A =
∏d−1
i=1 [ki, li] × {c} (ki < li, c ∈ Z) in Rd nor-

mal to ~v0 = (0, . . . , 0, 1) and every function h : N → R+ satisfying limn→∞ h(n) = +∞ and
limn→∞ log h(n)/nd−1 = 0, we have

lim
n→∞

φ(nA, h(n))

Hd−1(nA)
= ν(~v) in L1 . (2.6)

Moreover, if the origin of the graph belongs to A, or if∫
R+
x1+1/(d−1) dF (x) < ∞ ,

then the convergence (2.5) holds a.s..

Concerning the lower large deviations, we obtain this result.
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Theorem 26. Suppose that F ({0}) < 1− pc(d) and that F has finite mean∫
R+
x dF (x) < ∞ .

Then for every ε > 0 there exists a positive constant C ′′(d, F, ε) such that every non-degenerate hy-
perrectangle A =

∏d−1
i=1 [ki, li]×{c} (ki < li, c ∈ Z) normal to ~v0, for every function h : N→ R+ sat-

isfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/nd−1 = 0, there exists a constant C̃ ′′(d, F,A, h, ε)
such that

P
ñ
τ(nA, h(n))

Hd−1(nA)
≤ ν(~v0)− ε

ô
≤ C̃ ′′e−C

′′Hd−1(nA) .

When the distribution F admits an exponential moment, we obtain the following large deviation
principle.

Theorem 27. Suppose that F ({0}) < 1− pc(d) and

∃λ > 0 ,

∫
R+
eλx dF (x) < ∞ .

Then for every non degenerate hyperrectangle A =
∏d−1
i=1 [ki, li]×{c} (ki < li, c ∈ Z) in Rd normal to

~v0 and every function h : N → R+ satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/nd−1 = 0,
the sequence Ç

φ(nA, h(n))

Hd−1(nA)

å
n∈N

satisfies a large deviation principle of speed Hd−1(nA) with the same good rate function J~v0 as in
Theorem 21.

The proof of all these results rely on the following proposition.

Proposition 28. Suppose that F ({0}) < 1− pc(d) and

∃λ > 0 ,

∫
R+
eλx dF (x) < ∞ .

Then for every non degenerate hyperrectangle A =
∏d−1
i=1 [ki, li] × {c} (ki < li, c ∈ Z) in Rd nor-

mal to ~v0 = (0, . . . , 0, 1) and every function h : N → R+ satisfying limn→∞ h(n) = +∞ and
limn→∞ log h(n)/nd−1 = 0, for every x ∈ R+ we have

lim
n→∞

−1

Hd−1(nA)
logP

ñ
φ(nA, h(n)) ≤

Ç
x− 1√

n

å
Hd−1(nA)

ô
= I~v0(x) .

The proof of this proposition relies on the same idea as in Kesten [Kes87] and Zhang [Zha07]:
subadditivity is recovered by considering in each cylinder only the minimal capacity of a cutset whose
boundary is pinned along a given curve C on the vertical faces of the cylinder, or a curve obtained
from C by an adequate symmetry (see Figure 1.5). This "symmetric-subadditive" argument, which
was developed by Kesten [Kes87], does not work in non-straight cylinder. Indeed, it relies on the
fact that the distribution of the minimal capacity of a cutset whose boundary is pinned along a
given curve C is the same as the distribution of the minimal capacity of a cutset whose boundary is
pinned along a given curve C∗, where C∗ is the image of C by one of the symmetries of hyperplane
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Chapter 2. Maximal flow through cylinders: convergence and lower large deviations

spanned by a face of the cylinder cyl(nA, h(n)). This is true only for straight cylinders since the
graph Zd is invariant in this case by these symmetries.

From Proposition 28 we can deduce easily all the other results we stated concerning straight
cylinders. The only additional argument is the fact that under the assumption of an exponential
moment for the capacities of the edges, the probability that φ(nA, h(n)) is abnormally big decays
strictly faster than e−Cnd−1 for any constant C. This result will be presented in Chapter 3.

The assumption limn→∞ log h(n)/nd−1 = 0 in Theorem 25 is relevant. Indeed, suppose that
F ({0}) > 0, then the probability that all the vertical edges inside cyl(nA, h(n)) that intersect
a given horizontal hyperplane have null capacity is F ({0})Cnd−1 for some constant C, thus by
independence we obtain that

P [φ(nA, h(n)) 6= 0] ≤
[
1− F ({0})Cnd−1

]2h(n)
. (2.7)

If h(n) ≥ exp(knd−1) for k large enough, the right hand side of (2.7) is summable, thus the maximal
flow φ(nA, h(n)) is a.s. null for n large enough.

2.4 Non subadditive flows in dimension 2

In this section we present some results we proved together with Raphaël Rossignol in [RT10a, RT13].
We restrict ourselves to the case of dimension d = 2. Thanks to planar duality, we can see cutsets
as paths in the dual graph, which is of great help. We prove the following result concerning the
convergence of φ(nA, h(n)) in dimension 2. For short, we denote by ~vθ the vector of coordinates
(cos θ, sin θ), and by νθ the value of ν(~vθ).

Theorem 29. Let d = 2. Suppose that F (0) < 1 − pc(2) = 1/2 and that F admits a moment of
ordre 2 + ε for a positive ε > 0:

∃ε > 0

∫
R+
x2+ε dF (x) <∞ .

For every segment A of length l(A) > 0 normal to the unit vector ~vθ of coordinates (cos θ, sin θ) for
θ ∈ [0, π[, for very function h : N→ R+ satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/n = 0,
we define

D = lim sup
n→∞

ñ
θ − arctan

Ç
2h(n)

nl(A)

å
, θ + arctan

Ç
2h(n)

nl(A)

åô
and

D = lim inf
n→∞

ñ
θ − arctan

Ç
2h(n)

nl(A)

å
, θ + arctan

Ç
2h(n)

nl(A)

åô
.

Then we have

lim sup
n→∞

φ(nA, h(n))

nl(A)
= inf

®
ν
θ̃

cos(θ̃ − θ)
| θ̃ ∈ D

´
a.s.

and

lim inf
n→∞

φ(nA, h(n))

nl(A)
= inf

®
ν
θ̃

cos(θ̃ − θ)
| θ̃ ∈ D

´
a.s.

We get a necessary and sufficient condition for the convergence of φ(nA, h(n))/l(nA) to hold,
and we obtain an expression of its limit ηθ,h as an infimum when it exists.
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Corollary 30. Let d = 2. Under the hypotheses of Theorem 29, if there exists α ∈ [0, π/2] such
that

lim
n→∞

2h(n)

nl(A)
= tanα ∈ [0,+∞] ,

then

lim
n→∞

φ(nA, h(n))

nl(A)
= inf

®
ν
θ̃

cos(θ̃ − θ)
| θ̃ ∈ [θ − α, θ + α]

´
:= ηθ,h a.s. .

We also obtain the large deviation principle that describes the lower large deviations of the
rescaled maximal flow φ(nA, h(n))/l(nA) below its limit.

Theorem 31. Let d = 2. Suppose that F (0) < 1 − pc(2) = 1/2 and that F admits an exponential
moment

∃λ > 0 ,

∫
R+
eλx dF (x) <∞ .

For every segment A of length l(A) > 0 normal to the unit vector ~vθ of coordinates (cos θ, sin θ) for
θ ∈ [0, π[, for very function h : N→ R+ satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/n = 0,
and such that

lim
n→∞

2h(n)

nl(A)
= tanα

exists in [0,+∞], the sequence Ç
φ(nA, h(n))

nl(A)

å
n∈N

satisfies a large deviation principle of speed nl(A) with a good rate function K = Kθ,h. If we define

δθ,h = inf{λ |P(t(e) ≤ λ) > 0} × inf
θ̃∈[θ−α,θ+α]

| cos θ|+ | sin θ|
cos(θ̃ − θ)

,

we can list the following properties that the function K satisfies: it is infinite on [0, δθ,h[∪]ηθ,h,+∞[,
finite on ]δθ,h, ηθ,h], strictly positive on [δθ,h, ηθ,h[ if δθ,h < ηθ,h, nul on ηθ,h and strictly decreasing
where it is finite, i.e., if K(λ) <∞, then for every ε > 0 we have K(λ− ε) > K(λ).

The rate function K, that depends on θ and h, is defined through an optimization involving the
rate functions I~v′ for different values of ~v′. The function K is less explicit than I~v and thus less
understood, in particular we do not know if it is convex or continuous.

In the case of straight cylinders, "symmetric-subadditivity" was recovered for the maximal flows
φ(nA, h(n)) by looking at minimal cutsets with fixed boundary conditions. In dimension 2, the
boundary of a minimal cutset, i.e., of a geodesic path in the dual graph, is just made of two points
(x, y), one on each vertical side of cyl(nA, h(n)). Thus a boundary condition κ = (x, y) can also
be given by one point x (on the left side of the cylinder) and a direction θ̃ (such that θ̃ − π/2
is the direction in which the second point y is located, seen from x), see Figure 2.1. The more
the direction θ̃ differs from the orientation θ of the cylinder, the longest any cutset of boundary
condition κ in the cylinder has to be: a cutset of boundary condition κ = (x, θ̃) inside cyl(nA, h(n))
with A normal to ~vθ must contain at least nl(A)/ cos(θ̃ − θ) edges. The typical minimal cutset for
φ(nA, h(n)) will thus be oriented in a direction θ̃ that minimizes the quotient of the asymptotic unit
maximal flow in direction θ̃, namely ν

θ̃
, by cos(θ̃ − θ). Of course, this optimization can hold only

among the possible boundary conditions κ = (x, θ̃), that are perfectly described by the rate h(n)/n.
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cyl(nA, h(n))

~vθ

~v
θ̃

θ

θ̃
y

x

Figure 2.1: The boundary condition κ = (x, θ̃) inside the cylinder cyl(nA, h(n)).

If limn→∞ h(n)/n = 0, the only direction of boundary conditions that is asymptotically possible is
θ̃ = θ, thus we get the convergence of φ(nA, h(n))/l(nA) towards νθ. If limn→∞ h(n)/n = +∞, any
direction θ̃ is taken into account in the optimization. Between these two limit cases, any intermediate
regime can be observed. If h(n)/n does not converge, the maximal flows φ(nA, h(n))/l(nA) may
not converge neither.

This gives an intuitive idea of why the limit ηθ,h has such an expression. We give now a few more
details about the proofs. We use a concentration inequality as presented in the previous section to
prove that φ(nA, h(n)) is asymptotically close to its expectation. The proof of Theorem 29 boils
down to the proof of the convergence of E[φ(nA, h(n))]/l(nA). We then compare E[φ(nA, h(n))]
to E[φκ(nA, h(n))], where φκ(nA, h(n)) is the minimal capacity of a cutset of boundary condition
κ = (x, θ̃) inside cyl(nA, h(n)). This variable φκ(nA, h(n)) is compared itself to the maximal flow
τ(nA′, h(n)) inside an adequate cylinder cyl(nA′, h(n)) oriented towards the direction θ̃, i.e., A′

is normal to ~v
θ̃
. These comparisons also allow us to deduce the large deviation principle, Theo-

rem 31, from the corresponding large deviation principle Theorem 21 for τ(nA, h(n))/l(nA). The
comparison between φκ(nA, h(n)) and a maximal flow τ(nA′, h(n)) in a cylinder oriented towards
the direction θ̃ is made thanks to a "translation-subadditivity" argument. The boundary condition
κ = (x, θ̃) draws a line inside cyl(NA, h(N)) (for a large N) that can be paved with translates
ti(nA

′) of nA′ (see Figure 2.2), and the subadditivity of the maximal flows τ can be used to obtain
an inequality of the type φκ(NA, h(N)) ≤∑N/n

i=1 τ(ti(nA
′), h(n)), up to an error term. Conversely,

one cannot argue that maximal flows φκ are subadditive in the classical way. Indeed, if the bound-
ary conditions κ correspond to two points x1, x2 in a cylinder, and x3, x4 in an adjacent cylinder,
it is generically the case that x2 6= x3 thus cutsets with those boundary conditions cannot be glued
together. However, a simple translation of the second cylinder in the direction ~vθ can put the
boundary conditions inside the second cylinders at positions x′3, x′4 such that x′3 = x2, and then a
kind of subadditivity is recovered. By considering such translates t′i(nA) of nA (see Figure 2.3), we
can recover an inequality of the type τ(NA′, h(N)) ≤∑N/n

i=1 φ
κ(t′i(nA), h(n)), up to an error term.

We finish this section with a few words about the expression of the limit ηθ,h appearing in
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~vθ

~v
θ̃

y

cyl(NA, h(N))

cyl(ti(nA
′), h(n))

x

minimal cutset
for τ(ti(nA

′), h(n))

Figure 2.2: The comparison between φκ(NA, h(N)) and
∑N/n
i=1 τ(ti(nA

′), h(n)).

cyl(NA′, h(N))

cyl(t′i(nA), h(n))

minimal cutset
for φκ(t′i(nA), h(n))

~v
θ̃

~vθ

Figure 2.3: The comparison between τ(NA′, h(N)) and
∑N/n
i=1 φ

κ(t′i(nA), h(n)).

Corollary 30. This limit is expressed as an infimum, as it was the case implicitly for the limit I(A)
that appeared in Garet’s work [Gar06]. The use of a variational problem will be crucial in the study
of flows through more general domains, as we will see in Chapter 4.
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Chapter 3

Maximal flow through cylinders: upper
large deviations

3.1 Order of the large deviations

We present in this section results we obtained in [Thé07, Thé14]. We are interested in the upper
large deviations of the maximal flows through cylinders in any dimension d ≥ 2. We obtain the
following result concerning the maximal flows τ(nA, h(n)).

Theorem 32. Let A be a non degenerate hyperrectangle, and ~v one of the two unit vectors normal to
A. Let h : N→ R+ be a height function satisfying limn→∞ h(n) = +∞. The upper large deviations
of τ(nA, h(n))/Hd−1(nA) depend on the tail of the distribution F of the capacities. Indeed, we
obtain that:
i) if F has a bounded support, then for every x > ν(~v) we have

lim inf
n→∞

−1

Hd−1(nA) min(h(n), n)
logP

ñ
τ(nA, h(n))

Hd−1(nA)
≥ x
ô
> 0 ; (3.1)

the upper large deviations are then of volume order for height functions h such that h(n)/n is
bounded, and of order nd if limn→∞ h(n)/n = +∞.
ii) if F is the exponential law of parameter 1, then there exists n0(d,A, h), and for every x > ν(~v)
there exists a positive constant D depending only on d and x such that for all n ≥ n0 we have

−1

Hd−1(nA)
logP

ñ
τ(nA, h(n))

Hd−1(nA)
≥ x
ô
≤ D . (3.2)

iii) if F admits exponential moments of all orders:

∀λ > 0 ,

∫
[0,+∞[

eλxdF (x) < ∞ ,

then for all x > ν(~v) we have

lim
n→∞

−1

Hd−1(nA)
logP

ñ
τ(nA, h(n))

Hd−1(nA)
≥ x
ô

= +∞ . (3.3)
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We also prove the following partial result concerning the variables φ(nA, h(n)).

Theorem 33. Let A be a non degenerate hyperrectangle in Rd, of normal unit vector ~v, and h :
N → R+ be a function satisfying limn→∞ h(n) = +∞. We suppose that F admits an exponential
moment:

∃λ > 0 ,

∫
[0,+∞[

eλx dF (x) < ∞ .

Then for every x > ν(~v), we have

lim inf
n→∞

−1

Hd−1(nA)h(n)
logP[φ(nA, h(n)) ≥ xHd−1(nA)] > 0 .

The second result is partial, in the sense that ν(~v) is not the a.s. limit of φ(nA, h(n))/Hd−1(nA)
for general hyperrectangles A and height functions h. However, it is known to be the case if the
cylinders are straight or thin, thus in these two cases we prove that the upper large deviations of
φ(nA, h(n))/Hd−1(nA) are of volume order, as soon as the distribution of the capacities admits an
exponential moment. Indeed, if all the edges inside cyl(nA, h(n)) have an abnormally big capacity,
then φ(nA, h(n)) would be abnormally big. The number of edges inside cyl(nA, h(n)) is of order
nd−1h(n), thus the speed of the exponential decay of P[φ(nA, h(n)) ≥ (ν(~v)+ε)Hd−1(nA)] is exactly
nd−1h(n).

The speed of the upper large deviations of the variable τ(nA, h(n)) is more sensitive to the tail
distribution of the capacities. Indeed, τ(nA, h(n)) is equal to the minimal capacity of a custset with
boundary pinned along ∂(nA). Because of this boundary condition, such a cutset must contain
some edges near ∂(nA), thus if these edges have huge capacities, then the maximal flow τ(nA, h(n))
can explode. In other terms, a small amount of edges (negligible compared to the volume of the
cylinder) may improve abnormally the maximal flow τ(nA, h(n)) if the tail of F is not good enough.
When F has bounded support, this cannot happen, thus we recover upper large deviations of volume
order. In fact, the exact speed of the exponential decay of P[τ(nA, h(n)) ≥ (ν(~v) + ε)Hd−1(nA)] is
not proportional to nd−1h(n), as the volume of the cylinder cyl(nA, h(n)), but to nd−1 min(n, h(n)).
Intuitively, it is linked with the fact that the minimal cutset corresponding to τ(nA, h(n)) cannot
explore the whole cylinder cyl(nA, h(n)) since it is pinned along ∂(nA), it should be located in a
sub-cylinder of cyl(nA, h(n)) of height of order at most n. We would like to transform this intuitive
idea into some rigorous result about the location of a minimal cutset, but this question is a lot more
subtle. For a partial answer, we refer to the study of minimal cutsets in Chapter 4.

The idea of the proof of Theorem 33 is the following. For a large N and a smaller n, we
divide cyl(NA, h(N)) in its height into slabs (Si)i∈{1,...,h(N)/h(n)} (see Figure 3.1), and we denote
by φ(Si) the maximal flow from the top to the bottom of Si in the direction of ~v. We fill each slab
Si with translates cyl(ti,j(nA), h(n)) of cyl(nA, h(n)), for j ∈ {1, . . . , (N/n)d−1}. Thanks to the
subadditivity of τ(nA, h(n)) we have

φ(NA, h(N)) ≤ min
i∈{1,...,h(N)/h(n)}

φ(Si) ≤ min
i∈{1,...,h(N)/h(n)}

(N/n)d−1∑
j=1

τ(ti,j(nA), h(n)) .

We can use classical Cramér Theorem, together with Proposition 18, to conclude. Concerning the
variable τ(NA, h(N)), the idea is globally the same, but we need to add edges along the vertical
sides of the cylinder cyl(NA, h(N)) to recover a cutset for τ(NA, h(N)) from a cutset inside the
slab Si. If the slab Si is at distance k from NA, the number of edges we have to add is of order
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cyl(NA, h(N))

slab Si

cyl(ti,j(nA), h(n))

Figure 3.1: The cylinder cyl(NA, h(N)), the slabs Si and the cylinders cyl(ti,j(nA), h(n)) (the
construction can be done in a tilted cylinder).

Nd−2k. To control this term, we cannot allow k to be of order bigger than N , thus instead of
filling the entire cylinder cyl(NA, h(N)) with slabs of height h(n), we only fill the smaller cylinder
cyl(NA,min(N,h(N)). This gives birth to the speed of decay Hd−1(nA) min(h(n), n) that appears
in Theorem 32.

3.2 Refinement in dimension 2

In this section we present a result we obtained in [RT13] in collaboration with Raphaël Rossignol.
In dimension 2, the limit of φ(nA, h(n))/l(nA) is known even when cyl(nA, h(n)) is not straight or
thin, at least under some assumptions on F and h. Let ~vθ be a unit vector normal to the segment
A. When limn→∞ 2h(n)/l(nA) = tanα ∈ [−∞,+∞], the limit of φ(nA, h(n))/l(nA) is equal to

ηθ,h = inf

®
ν
θ̃

cos(θ̃ − θ)
| θ̃ ∈ [θ − α, θ + α]

´
,

as stated in Theorem 29 and Corollary 30. We define

θ̃∗ = argmin
®

ν
θ̃

cos(θ̃ − θ)
| θ̃ ∈ [θ − α, θ + α]

´
.

In the sketch of the proof we gave in the previous section, we divided cyl(NA, h(N)) into slabs that
where normal to the direction ~vθ, just like A is. We can choose instead to divide cyl(NA, h(N)) into
slabs that are normal to the direction ~v

θ̃∗
. An easy adaptation of the rest of the proof of Theorem

33 leads to the following result.

Theorem 34. Let d = 2. Suppose that F (0) < 1 − pc(2) = 1/2 and that F admits an exponential
moment:

∃λ > 0 ,

∫
R+
eλx dF (x) <∞ .
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Chapter 3. Maximal flow through cylinders: upper large deviations

For every segment A of length l(A) > 0 normal to the unit vector ~vθ = (cos θ, sin θ) for θ ∈ [0, π[,
for very height function h : N → R+ satisfyling limn→∞ h(n) = +∞ and limn→∞ log h(n)/n = 0
such that

lim
n→∞

φ(nA, h(n))

l(nA)
= ηθ,h

exists a.s., for all x > ηθ,h we have

lim inf
n→∞

−1

l(nA)h(n)
logP [φ(nA, h(n)) ≥ xl(nA)] > 0 .

This proves in dimension d = 2 that the upper large deviations of φ(nA, h(n)) are indeed of
volume order.

3.3 Large deviation principle

We go back to the case of a general dimension d ≥ 2. We present here a result proved in [Thé07]. In
the case of straight cylinders, Theorem 33 states that P[φ(nA, h(n)) ≥ (ν(~v) + ε)Hd−1(nA)] decays
exponentially fast with nd−1h(n), under some moment assumption. We go one step further and
prove the corresponding large deviation principle. It has been proved in [Thé07] only for straight
cylinders of the form [0, n]d−1 × [0, h(n)] but the proof can be extended without difficulties to any
straight cylinder.

Theorem 35. Let A =
∏d−1
i=1 [ki, li]× {c} (ki < li, c ∈ Z) be a non degenerate hyperrectangle in Rd

normal to ~v0 = (0, . . . , 0, 1) and let h : N → R+ satisfying limn→∞ h(n)/ log n = +∞. Then for
every x ∈ R+, the limit

ψ(x) = lim
n→∞

−1

Hd−1(nA)h(n)
logP

î
φ(nA, h(n)) ≥ xHd−1(nA)

ó
exists in [0,+∞] (it may be infinite) and is independent of A and h. Moreover, ψ is convexe on
R+, finite and continuous on the set {x ∈ R+ : F ([x,+∞[) > 0}. If F admits a finite mean∫

R+
x dF (x) < ∞ ,

then ψ is null on [0, ν(~v0)]. If F admits an exponential moment

∃λ > 0 ,

∫
R+
eλx dF (x) <∞ ,

then ψ is strictly positive on ]ν(~v0),+∞[ and the sequenceÇ
φ(nA, h(n))

Hd−1(nA)

å
n∈N

satisfies a large deviation principle of speed Hd−1(nA)h(n) with good rate function ψ.

The hard part of the proof of Theorem 35 is the proof of the existence of ψ. The strict positivity
of ψ is a consequence of Theorem 33 (in fact, Theorem 33 has been proved first in [Thé07] in the
case of straight cylinders), whereas the proof of the large deviation principle given the existence of ψ
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3.3. Large deviation principle

uses classical ideas in large deviations theory. The proof of the existence of ψ requires to study the
maximal streams inside cylinders, contrary to all the results that have been presented previously
that relied on the study of the minimal cutsets. Consider a large N and a smaller n. We divide
the cylinder cyl(NA, h(N)) into columns Ci for i ∈ {1, . . . , Nd−1/nd−1} whose basis are translates
of nA and whose heights are equal to 2h(N) (see Figure 3.2), and we denote by φ(Ci) the maximal
flow from the top to the bottom of Ci in the direction of ~v0. Then the maximal flow through

column Ci

cyl(NA, h(N))

cyl(t′i,j(nA), h(n))

Figure 3.2: The straight cylinder cyl(NA, h(N)), the columns Ci and the cylinders
cyl(t′i,j(nA), h(n)).

cyl(NA, h(N)) from its top to its bottom is bigger than the sum of the maximal flows through each
column:

φ(NA, h(N)) ≥
Nd−1/nd−1∑

i=1

φ(Ci) .

We divide now each column Ci into h(N)/h(n) smaller cylinders of height 2h(n), each of them being
a translate cyl(t′i,j(nA), h(n)) of cyl(nA, h(n)). Imagine that the water that crosses the cylinder of
height 2h(n) at the top of the column Ci can enter into the second cylinder of the pile, and so on,
so that

φ(Ci) ≥ min
j∈{1,...,h(N)/h(n)}

φ(t′i,j(nA), h(n)) . (3.4)
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Chapter 3. Maximal flow through cylinders: upper large deviations

Then it would be the case that for all x ∈ R+,

P
î
φ(NA, h(N)) ≥ xHd−1(NA)

ó
≥ P

î
∀i ∈ {1, . . . , Nd−1/nd−1} , φ(Ci) ≥ xHd−1(nA)

ó
≥

Nd−1/nd−1∏
i=1

P
î
φ(Ci) ≥ xHd−1(nA)

ó
≥

Nd−1/nd−1∏
i=1

P
î
∀j ∈ {1, . . . , h(N)/h(n) , φ(t′i,j(nA), h(n)) ≥ xHd−1(nA)

ó
≥

Nd−1/nd−1∏
i=1

h(N)/h(n)∏
j=1

P
î
φ(t′i,j(nA), h(n)) ≥ xHd−1(nA)

ó
≥ P

î
φ(nA, h(n)) ≥ xHd−1(nA)

óNd−1h(N)

nd−1h(n) . (3.5)

This would be enough to conclude that ψ(x) exists by letting N and then n go to infinity. However,
we have no hope to prove an inequality as strong as (3.4). Inspired by the symmetry argument
already used in the study of minimal cutsets in straight boxes, we restrict ourselves to study max-
imal flows through the small cylinders cyl(t′i,j(nA), h(n)) that are achieved by streams of specific
boundary conditions D. A boundary condition for a stream is a constraint that fixes the amount
of water that crosses each edge at the top and at the bottom of the cylinder. It is possible to
glue together streams through cylinders that are piled in a column if you impose to these streams
boundary conditions D and D∗ that are symmetric, so that the water that escapes from a cylinder
through an edge can directly enter in the next cylinder of the pile. If we denote by φD(nA, h(n))
the maximal flow through cyl(nA, h(n)) from its top to its bottom for a stream with prescribed
boundary conditions D, we use the invariance of the graph by the symmetry with regard to one
of the hyperplanes of the axis to state that φD(nA, h(n)) and φD

∗
(nA, h(n)) have the same law.

Inequality (3.5) is thus replaced by

P
î
φ(NA, h(N)) ≥ xHd−1(NA)

ó
≥ P

î
φD((nA), h(n)) ≥ xHd−1(nA)

ó(Nd−1h(N))/(nd−1h(n))
.

It remains to control the number of possible boundary conditions for streams to conclude the proof.
The study of the maximal flow φ(nA, h(n)) through straight cylinders (convergence, lower and

upper large deviations) relies heavily on symmetry properties that are not true if one consider a
tilted cylinder cyl(nA, h(n)). The study of maximal flows φ(nA, h(n)) through tilted cylinders in
dimension d ≥ 3 is in fact not really easier than the study of maximal flows through general domains
of Rd. This is the object of the next Chapter.
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Chapter 4

Maximal flow through a domain of Rd

4.1 Some notations

In this chapter, we study maximal flows through general domains Ω of Rd. Since no direction is
particularly pertinent when regarding Ω, we want that the dimensions of Ω go to infinity isotropically
with regard to the underlying graph. For simplicity of notation, we choose in this chapter to fix
the domain Ω and to consider the rescaled graph (Zd/n,Ed/n). We consider an open bounded
connected subset Ω of Rd. Let Γ1, Γ2 be two disjoint subsets of Γ = ∂Ω that are open in Γ. We
want to study the maximal flow from Γ1 to Γ2 through Ω for the capacities (t(e), e ∈ Ed/n). We
consider a discrete version (Ωn,Γn,Γ

1
n,Γ

2
n) of (Ω,Γ,Γ1,Γ2) defined by:

Ωn = {x ∈ Zdn | d∞(x,Ω) < 1/n} ,
Γn = {x ∈ Ωn | ∃y /∈ Ωn , (x, y) ∈ Edn} ,
Γin = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,

where d∞ is the L∞-distance and (x, y) is the edge of endpoints x and y (see Figure 4.1). For short

Γ2
Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 4.1: The domain (Ω,Γ,Γ1,Γ2) and its discrete version (Ωn,Γn,Γ
1
n,Γ

2
n).

we denote by φn the maximal flow φ(Γ1
n → Γ2

n in Ωn) in the graph (Zd/n,Ed/n). To study the
maximal flow φn, we need to impose some regularity to the domain (Ω,Γ1,Γ2).
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Chapter 4. Maximal flow through a domain of Rd

Definition. We say that a domain (Ω,Γ1,Γ2) is nice if it satisfies the following conditions: Ω is a
bounded open connected subset of Rd, that is a Lipschitz domain; its boundary Γ is included in the
union of a finite number of oriented hypersurfaces of class C1 that intersect each other transversally;
the sets Γ1 and Γ2 are open subsets of Γ satisfying inf{‖x − y‖2 , x ∈ Γ1 , y ∈ Γ2) > 0, and their
relative boundaries ∂ΓΓ1 and ∂ΓΓ2 have null Hd−1 measure.

We have two examples in mind: Ω can be a very regular domain whose boundary Γ is a hyper-
surface of class C1, or Ω can be a tilted cylinder of top Γ1 and bottom Γ2.

4.2 Large deviation estimates

This section gathers the results we proved with Raphaël Cerf in the companion papers [CT11a,
CT11b, CT11c]. We state in these articles that, under some hypotheses on (Ω,Γ1,Γ2) and F , the
rescaled maximal flow φn/n

d−1 converges a.s. towards a constant φΩ (that depends on the dimension
d ≥ 2, on the domain (Ω,Γ1,Γ2) and on the distribution F of the capacities), that the lower large
deviations of φn/nd−1 are of surface order, and that its upper large deviations are of volume order.
More precisely, we obtain the following theorem.

Theorem 36. Let (Ω,Γ1,Γ2) be a nice domain. If F admits an exponential moment

∃λ > 0 ,

∫
R+
eλx dF (x) <∞ ,

then there exists a constant φΩ (that depends on d, (Ω,Γ1,Γ2) and F ) such that

lim
n→∞

φn
nd−1

= φΩ a.s. .

Moreover, we know that
φΩ > 0 ⇐⇒ F ({0}) < 1− pc(d)

and we have the following control on the large deviations of φn:

∀x ∈ [0, φΩ) , lim sup
n→∞

1

nd−1
logP

î
φn ≤ xnd−1

ó
< 0 , (4.1)

∀x ∈ (φΩ,+∞) , lim sup
n→∞

1

nd
logP

î
φn ≥ xnd−1

ó
< 0 . (4.2)

The convergence of φn/nd−1 is a consequence of the large deviation estimates (4.1) and (4.2).
In fact, the strategy of the proof is the following.

• We prove in [CT11b] that there exists a constant φΩ such that for every x < φΩ we have

lim sup
n→∞

1

nd−1
logP

î
φn ≤ xnd−1

ó
< 0 . (4.3)

• We prove in [CT11c] that there exists a constant φ̃Ω such that for every x > φ̃Ω we have

lim sup
n→∞

1

nd
logP

î
φn ≥ xnd−1

ó
< 0 . (4.4)
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4.2. Large deviation estimates

• We finally prove in [CT11a] that φ̃Ω = φΩ.

We believe that the hypothesis of an exponential moment is not needed for the a.s. convergence of
φn/n

d−1 to hold, but it is needed to get the upper large deviation estimate (4.2), thus we cannot
hope to weaken this hypothesis with this strategy of proof.

The constants φΩ and φ̃Ω can be expressed as infimums over capacities of continuous cutsets,
similarly to the limit ηθ,h that appeared in dimension d = 2 (see Theorem 29 and Corollary 30).
If A is a subset of Ω, let ∂A be its boundary and ∂∗A its reduced boundary - see [Cer06] for a
definition of this term, what we need here is the fact that A admits an exterior normal unit vector
~vA(x) at each point x ∈ ∂∗A. We can complete the boundary of any subset A of Ω to obtain a
continuous cutset S(A), i.e., a hypersurface that intersects any path from Γ1 to Γ2 in Ω, in this way
(see Figure 4.2):

S(A) = (∂A ∩ Ω) ∪
Ä
Γ2 ∩ ∂(A ∩ Ω)

ä
∪
Ä
Γ1 ∩ ∂(Ω rA)

ä
.

We denote by S∗(A) the reduced set A built from the reduced boundaries of A and Ω, and we

S(A)

Γ2Γ1

Ω

A

y

~vS(A)(x)

~vS(A)(y)

x

~vS(A)(z)

z

Figure 4.2: The continuous cutset S(A) associated with a subset A of Ω.

denote by ~vS(A)(x) the unit vector normal to S(A) at x ∈ S∗(A) (more precisely, ~vS(A)(x) = ~vA(x) if
x ∈ (∂∗A ∩ Ω)∪

(
Γ2 ∩ ∂∗(A ∩ Ω)

)
, and ~vS(A)(x) = ~vΩ(x) if x ∈ Γ1 ∩ ∂∗(ΩrA)). Since the constant

ν(~v) can be seen as the asymptotic rescaled minimal capacity of a unit continuous surface globally
normal to ~v, it is natural to associate with a continuous cutset S(A) the following capacity:

capacont(S(A)) =

∫
S∗(A)

ν(~vS(A)(x)) dHd−1(x) .

The constant φΩ is defined as the infimum of the continuous capacity of continuous cutsets that
have enough regularity:

φΩ = inf{capacont(S(A)) : A ⊂ Ω , A has finite perimeter} .

The property that A has finite perimeter is equivalent to the property that 1A has bounded variation.
This property guarantees that ~vA(x) is well defined Hd−1-almost everywhere on ∂A, i.e., that
Hd−1(∂A r ∂∗A) = 0. The constant φ̃Ω has the same form as φΩ but the infimum is taken over
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Chapter 4. Maximal flow through a domain of Rd

polyhedral sets A. The proof of the equality φ̃Ω = φΩ is thus entirely geometric, and we choose not
to talk about it. We just notice that Garet [Gar06] already used a polyhedral approximation, but
it was easier to prove since he worked in dimension d = 2.

Let us say a few words about the proof of inequality (4.3). We are studying the lower large
deviations of φn/nd−1: they are controlled by what happens around a minimal cutset. First, we use
the estimate of the number of edges in a minimal cutset obtained by Zhang [Zha07] (see Theorem
11 in this dissertation) to restrict the problem to cutsets having a number of edges at most equal to
cnd−1 for a constant c; we can then conclude that the set of plaquettes corresponding to the minimal
cutset is "near" the boundary of a subset A of Ω of perimeter smaller than c. The subsets of Ω
of perimeter smaller than a constant c is compact. By making an adequate covering of this space,
we need only to deal with a finite number of sets A and their neighborhoods. We then cover the
boundary of such a set A by balls of very small radius, such that ∂A is "almost flat" in each ball; we
also show that if φn is smaller than φΩ(1−ε)nd−1 for some positive ε, then some local event happens
in each ball of the covering of ∂A. After that, we construct a link between this local event in a ball
and the fact that the maximal flow through a cylinder (included in the ball) is abnormally small.
Since the lower large deviations for the maximal flow through a cylinder are already known to be
of surface order (see Theorem 19), we can conclude. This proof is largely inspired by the methods
used to study the Wulff crystal in Ising model in dimension d ≥ 3 (see [Cer06] for instance).

The proof of the upper large deviation estimate (4.4) is complicated by geometric issues, but the
idea is roughly speaking very similar. Consider a polyhedral set P such that capacont(P ) is very close
to φ̃Ω, so that if φn ≥ (φ̃Ω+2ε)nd−1, then φn ≥ (capacont(P )+ε)nd−1. We almost cover the boundary
of P by small cylinders, up to a part of of small Hd−1-measure. If φn ≥ (capacont(P ) + ε)nd−1,
then either the maximal flow through one of these cylinders must be abnormally big, and we know
by Theorem 33 that the probability that this happens decays exponentially fast with nd, or the
maximal flow that crosses the part of ∂P forgotten during the covering is abnormally big. We
control the probability that this second event happens thanks to an optimization among different
choices of cutsets in this part of the domain.

We do not give more details about the proof of the upper large deviations, since this proof is
less relevant than the proof of the lower large deviations. Indeed, the lower large deviations of the
maximal flow φn are linked with what happens around a cutset, and this is exactly what the proof
of Inequality (4.3) is looking at. Conversely, the proof of the upper large deviation principle for
maximal flows through straight cylinders, Theorem 35, tells us that the study of the upper large
deviations of maximal flows is more linked with the understanding of the maximal streams than
with the understanding of the minimal cutsets. The proof of inequality (4.4) is thus efficient, but
we have no hope to prove this way for instance that limn→∞

1
nd

logP
î
φn ≥ xnd−1

ó
exists, and thus

to obtain a corresponding large deviation principle. In a sense, the proof of Theorem 36 gives to us
many informations about the behavior of minimal cutsets, but no informations about the behavior
of maximal streams.

4.3 Maximal stream and minimal cutset

This section is devoted to the presentation of the results we obtained with Raphaël Cerf in [CT14a].
Our goal is now to understand the asymptotic behavior of maximal streams and minimal cutsets
inside Ω. A stream and a cutset inside Ωn on (Zd/n,Ed/n) are discrete objects. We associate with
them some objects that can be considered at the same time in a discrete and in a continuous setting.

52



4.3. Maximal stream and minimal cutset

Concerning the cutsets, if En is a cutset inside Ωn between Γ1
n and Γ2

n, we see its dual set of
plaquettes E∗n as the boundary inside Ω of a subset En defined as

En =

{
x+ u

∣∣∣ x ∈ Zdn ∩ Ω , there exists a path from Γ1
n to x in (Zd/n, (Ed/n ∩ Ω) r En)

u ∈
î
−1
2n ,

1
2n

ód }
.

We have already defined in the previous section the corresponding continuous objects: with a
subset A of Ω we associate the continuous cutset S(A) (see Figure 4.2) and the continuous capacity
capacont(S(A)). The first variational problem we define is thus as previously

φΩ = inf{capacont(S(A)) : A ⊂ Ω , A has finite perimeter} ,

and we define the corresponding set of minimizers

Σcutset = {A ⊂ Ω : A has finite perimeter and capacont(S(A)) = φΩ} .

Concerning the streams, if ~fn is an admissible stream inside Ωn between Γ1
n and Γ2

n, we define
the corresponding vector measure ~µn by

~µn =
1

nd

∑
e∈Ed/n∩Ω

~fn(e)δc(e)

where c(e) is the center of e. The vector ~µn, that we call a stream by extension, is a rescaled measure
version of the stream function ~fn. It is defined on (Rd,B(Rd)) where B(Rd) is the collection of the
Borel sets of Rd, and it takes values in Rd. Since ~µn is rescaled, we associate with it a flow which
is equal to the rescaled flow flow(~fn)/nd−1:

flowdisc(~µn) =
flow(~fn)

nd−1
.

We say that a (vector) stream ~µn is maximal if flowdisc(~µn) = φn/n
d−1, and if according to this

stream no water escapes from Ωn through Γ1
n nor enters in Ωn through Γ2

n. We now turn to the
definition of a continuous stream. A continuous stream is for us a measure ~σLd which is absolutely
continuous with regard to the Lebesgue measure Ld on Rd and whose density ~σ ∈ L∞(Rd → Rd,Ld)
is null outside Ω, i.e., ~σ = 0 Ld-a.e. on Ωc, and has the following properties:

• boundary conditions: ~σ · ~vΩ = 0 Hd−1-a.e. on Γ r (Γ1 ∪ Γ2) and ~σ · ~vΩ ≤ 0 Hd−1-a.e. on Γ1;

• conservation law: div~σ = 0 Ld-a.e. on Ω;

• capacity constraint: ~σ · ~v ≤ ν(~v) for all ~v ∈ Sd−1 , Ld-a.e. on Ω .

Here we interpret ν(~v) as the asymptotic rescaled maximal flow that can flow through the media
in direction ~v. Since we suppose only that ~σ ∈ L∞(Rd → Rd,Ld), the meaning of those properties
is not obvious. The derivation must be understood in terms of distributions. We refer to Nozawa
[Noz90] for precise definitions giving mathematical sense to all these properties. With any continuous
stream ~σLd, we associate its continuous flow defined as

flowcont(~σLd) =

∫
Γ1
−~σ · ~vΩ dHd−1 .
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Chapter 4. Maximal flow through a domain of Rd

This is the amount of water that enters into Ω along Γ1 according to the stream ~σLd. The second
variational problem we define is thus

φ̂Ω = sup


flowcont(~σLd)

∣∣∣∣∣∣
~σ ∈ L∞(Rd → Rd,Ld) , ~σ = 0 Ld-a.e. on Ωc ,

div~σ = 0 Ld-a.e. on Ω ,
~σ · ~v ≤ ν(~v) for all ~v ∈ Sd−1 , Ld-a.e. on Ω ,

~σ · ~vΩ ≤ 0 Hd−1-a.e. on Γ1 ,
~σ · ~vΩ = 0 Hd−1-a.e. on Γ r (Γ1 ∪ Γ2)


. (4.5)

We also define the corresponding set of minimizers

Σstream =


~σLd

∣∣∣∣∣∣
~σ ∈ L∞(Rd → Rd,Ld) , ~σ = 0 Ld-a.e. on Ωc ,

div~σ = 0 Ld-a.e. on Ω ,
~σ · ~v ≤ ν(~v) for all ~v ∈ Sd−1 , Ld-a.e. on Ω ,

~σ · ~vΩ ≤ 0 Hd−1-a.e. on Γ1 ,
~σ · ~vΩ = 0 Hd−1-a.e. on Γ r (Γ1 ∪ Γ2) ,

flowcont(~σLd) = φ̂Ω


.

A continuous max-flow min-cut has been proved by Nozawa [Noz90] in this setting

Theorem 37 (Continuous max-flow min-cut theorem). Suppose that Ω is a bounded domain of Rd
with Lipschitz boundary Γ, and that Γ1 and Γ2 are two disjoint Borel subsets of Γ. The following
equality holds:

φΩ = φ̂Ω < ∞ .

Moreover, there exists a maximal continuous stream, i.e., there exists a vector field ~σ as required in
(4.5) such that flowcont(~σLd) = φ̂Ω.

We define the distance d between subsets of Rd by

∀A,B ⊂ Rd , d(A,B) = Ld(A4B)

where A4B = (A∩Bc)∪(Ac∩B) is the symmetric difference of A and B. We prove the convergence
of a sequence of discrete minimal custsets (resp. maximal streams) towards the set of continuous
minimal cutsets Σcutset (resp. of continuous maximal streams Σstream).

Theorem 38. We suppose that the domain (Ω,Γ1,Γ2) is nice and that the law F of the capacities
has a bounded support.
(i) For all n ≥ 1, let ~µmax

n be a random maximal discrete stream (seen as a vector measure) from
Γ1
n to Γ2

n in Ωn. Then (~µmax
n )n≥1 converges weakly a.s. towards the set Σstream, i.e.,

a.s. , ∀f ∈ Cb(Rd,R) , lim
n→∞

inf
~σLd∈Σstream

∥∥∥∥∫
Rd
f d~µmax

n −
∫
Rd
f~σ dLd

∥∥∥∥ = 0 .

(ii) We suppose also that F ({0}) < 1− pc(d). For all n ≥ 1, let Emin
n be a minimal cutset (seen as

a subset of Rd) in Ωn from Γ1
n to Γ2

n with minimal cardinality (i.e., with minimal perimeter). Then
the sequence (Emin

n )n≥1 converges a.s. for the distance d towards the set Σcutset, i.e.,

a.s. , lim
n→∞

inf
A∈Σcutset

d(Emin
n , A) = 0 .
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As a by-product of the proof of Theorem 38, we recover two known results:

• The continuous max-flow min-cut theorem proved by Nozawa [Noz90]

φΩ = φ̂Ω .

• The convergence of the rescaled maximal flows we presented in Section 4.2, restricted to the
case of bounded capacities

lim
n→∞

φn
nd−1

= φΩ a.s. .

If the set of minimizers Σstream is reduced to a single continuous maximal stream, then Theorem
38 states that the sequence of discrete maximal streams converges weakly towards this maximizer.
The same holds for the minimal cutsets. However, the question of the uniqueness of a continuous
maximal stream, or of a continuous minimal cutset, is not trivial and we think that the answer
should depend on the domain (Ω,Γ1,Γ2).

The strategy of the proof is the following. We first study a sequence of discrete maximal
streams (~µmax

n )n≥1. By compactness, we prove that from each subsequence of (~µmax
n )n≥1 we can

extract a sub-subsequence which is weakly convergent. If we denote by ~µ its limit, we prove that
a.s. ~µ = ~σLd and that ~σLd is a continuous stream which is admissible for the max-flow problem
φ̂Ω: the boundary conditions and the conservation law satisfied by ~σ are derived directly from the
corresponding properties satisfied by ~µmax

n , the delicate part of the proof is to state that ~σ satisfies
the capacity constraint

~σ · ~v ≤ ν(~v) for all ~v ∈ Sd−1 , Ld-a.e. on Ω . (4.6)

Moreover, we prove that along the converging subsequence,

lim
n→∞

flowdisc(~µmax
n ) = flowcont(~σLd) a.s. (4.7)

Independently, we study a sequence of minimal cutsets (Emin
n )n≥1. By compactness and using

Zhang’s Theorem 11, we prove that from each subsequence of (Emin
n )n≥1 we can extract a sub-

subsequence which is convergent for the distance d. If we denote by A its limit, we prove that
A ⊂ Ω and has finite perimeter, i.e., A is admissible for the min-cut problem φΩ. Moreover, we
prove that along the converging subsequence,

lim inf
n→∞

T (Emin
n )

nd−1
≥ capacont(A) a.s. (4.8)

where T (Emin
n ) is the capacity of the minimal cutset Emin

n corresponding to Emin
n . Finally we establish

that for any subset A of Ω with finite perimeter and any admissible stream ~σLd, we have

capacont(F ) ≥ flowcont(~σLd) . (4.9)

Then combining Equations (4.7), (4.8) and (4.9) we derive the results presented in Theorem 38.
The most original part of this work is the study of maximal streams. The study of minimal

cutsets relies largely on the techniques used in [CT11b] to prove that the lower large deviations of
φn are of surface order. To complete the proofs we also use the result of polyhedral approximation
proved in [CT11a]. In the proof of the law of large numbers for φn we present here, we have replaced
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Chapter 4. Maximal flow through a domain of Rd

the study of the upper large deviations of φn performed in [CT11c] by the study of the maximal
streams, which is more natural, and we have adapted the arguments given in the study of the lower
large deviations of φn in [CT11b] to obtain informations on the behavior of minimal cutsets.

Let us say a few word about the proof of (4.6), which relies on the comparison between the
integral of a stream inside a cylinder and the flow that crosses this cylinder according to that
stream. This comparison is a key argument in our study, and is used again in the proof of (4.7) and
(4.9). If (~µn)n∈N is a sequence of discrete admissible streams that converges towards a limit ~σLd,
we have ∫

D
~σ · ~v dLd = lim

n→∞

∫
D
d~µn · ~v ,

for every Borel set D such that Ld(∂D) = 0. On one hand, using Lebesgue differentiation theorem,
we know that for Ld-a.e. x,

1

Ld(D(x, ε))

∫
D(x,ε)

~σ · ~v dLd

converges towards ~σ(x) · ~v when ε goes to zero, where D(x, ε) is a good sequence of neighborhoods
of x of diameter ε. To conclude that ~σ ·~v is bounded by ν(~v), it remains to compare

∫
D d~µn ·~v with

ν(~v). Let us admit for a moment that if D is a cylinder of height h in the direction ~v,
∫
D d~µn · ~v is

close to hΨ(~µn, D,~v)/nd−1, where Ψ(~µn, D,~v) is the amount of fluid that crosses D from the lower
half part to the upper half part of its boundary in the direction ~v according to the stream ~µn. Since
Ψ(~µn, D,~v) ≤ τn(D,~v), where τn(D,~v) is the maximal value of such a flow, we can conclude the
proof by using the convergence of the rescaled flow τn(D,~v)/nd−1 towards ν(~v). The delicate step
is the proof of the property we admitted. In fact, if ~l is a C1 vector field on D with null divergence
and such that ~l · ~vD = 0 Hd−1-a.e. on the vertical faces of D (the ones that are not normal to ~v), if
we denote by B the basis of D, then by Fubini theorem we have∫

D

~l · ~v dLd =

∫ h

0

Å∫
B+u~v

~l · ~v dHd−1
ã
du

and we have for all u ∫
B+u~v

~l · ~v dHd−1 =

∫
B

~l · ~v dHd−1

by the Gauss-Green Theorem since div~l = 0 Ld-a.e. on Ω. We obtain that∫
D

~l · ~v dLd = h

∫
B

~l · ~v dHd−1

and
∫
B
~l · ~v dHd−1 is indeed the flow that goes from the bottom to the top of D according to ~l. In

[CT14a] we adapt this argument to a discrete stream ~µn, and we consider a cylinder thin enough
(i.e., h small enough) to control the amount of fluid that enters in D or escapes from D through its
vertical faces.

The assumption that the capacities are bounded in Theorem 38 is not relevant in all likelihood.
However, this technical assumption gives us the compactness of the family of the discrete maximal
streams, without which we do not know how to prove the convergence of these streams.
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5.1 Shape theorem in a supercritical Bernoulli percolation cluster

In this section we present the results we obtained with Raphaël Cerf in [CT14b]. We consider
the graph (Zd,Ed), equipped with a family of i.i.d. non-negative random variables (t(e))e∈Ed with
common distribution F . We change our point of view and interpret now t(e) as the time needed to
cross the edge e. The time T (x, y) needed to go from a vertex x to a vertex y ∈ Zd is defined by

T (x, y) = inf{T (γ) : γ is a path from x to y} .

Suppose that the passage time t(e) of an edge e can be infinite, i.e., that the support of F is
[0,+∞]. Equivalently, perform an i.i.d. Bernoulli bound percolation of parameter p∞ = F ([0,+∞)),
associate an infinite passage time each closed edge, and then independently associate with each open
edge a finite passage time (whose distribution is F conditioned to be finite). We want to study the
behavior of T (0, x) when ‖x‖1 is large. If 0 and x are not connected by a path of edges with
finite passage time, then T (0, x) = +∞. To have hope to deal with finite passage times T (0, x)
for arbitrarily large ‖x‖1, one should at least suppose that the percolation (1t(e)<∞, e ∈ Ed) of
edges with finite passage time percolates. In fact, we make the assumption that this percolation is
supercritical, i.e., we suppose that p∞ = F ([0,+∞)) > pc(d).

We extend to this setting the definition of the time constant and the shape theorem without any
moment assumption, at the price of weakening the convergence we prove. In fact, we follow Cox,
Durrett and Kesten [CD81, Kes86] and define regularized passage times that converge in a stronger
sense towards the time constant and the asymptotic shape. Since the only assumption we make
on F ({+∞}) is that F ({+∞}) < 1− pc(d), it is not the case that any point x is surrounded by a
shape of edges with finite passage time that disconnect x from infinity. Thus we need to propose
a definition of regularized passage times that is different of the one proposed by Cox, Durrett and
Kesten [CD81, Kes86]. Let M > 0 be such that F ([0,M ]) > pc(d). We denote by C∞ (resp. CM )
the a.s. unique infinite cluster of the percolation (1{t(e)<∞}, e ∈ Ed) (resp. (1{t(e)≤M}, e ∈ Ed)),
i.e., the percolation obtained by keeping only edges with finite passage time (resp. with passage
time less than M). For any x ∈ Zd, we define x̃C∞ (resp. x̃CM ) as the point y of C∞ (resp. CM )
which minimizes ‖x−y‖1 (with a deterministic rule to break ties). For any x, y ∈ Zd, we define two
regularized passage times, namely ‹T C∞(x, y) = T (x̃C∞ , ỹC∞)
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and ‹T CM (x, y) = T (x̃CM , ỹCM ) .

For this second time, the parameter M only plays a role in the choice of x̃CM and ỹCM . Once these
points are chosen, the optimization in ‹T CMG (x, y) is on all paths between x̃CM and ỹCM , paths using
edges with passage time larger than M included. But as x̃CM ∈ CM and ỹCM ∈ CM , we know that
there exists a path using only edges with passage time less thanM between these two points. To be
more precise, we denote by DC(x, y) the chemical distance (or graph distance) between two vertices
x and y on a cluster C:

∀x, y ∈ Zd , DC(x, y) = inf{|r| : r is a path from x to y , r ⊂ C} ,

where inf ∅ = +∞. Then, for any x, y ∈ Zd,‹T CM (x, y) ≤ MDCM (x̃CM , ỹCM ) .

Antal and Pisztora [AP96] proved a control on the tail distribution of the chemical distance in
a supercritical Bernoulli percolation cluster. Together with a control on the size of the holes of
the infinite cluster of a supercritical percolation, this gives us good integrability properties for the
regularized passage time ‹T CM .

Proposition 39. Let F be a probability measure on [0,+∞] such that F ([0,+∞)) > pc(d). For
every M ∈ R+ such that F ([0,M ]) > pc(d), there exist positive constants C1, C2 and C3 such that

∀x ∈ Zd , ∀l ≥ C3‖x‖1 , P
î‹T CM (0, x) > l

ó
≤ C1e

−C2l .

Proposition 39 implies in particular that the times ‹T CM (0, x) are integrable. A classical appli-
cation of a subadditive ergodic theorem gives the existence of a time constant defined as the a.s.
limit of the rescaled passage times regularized at level M . By a comparison between ‹T CM (0, x),‹T C∞(0, x) and T (0, x), we prove that the regularized times ‹T C∞(0, x) and the non-regularized times
T (0, x) also converge to this time constant, but in a weaker sense.

Theorem 40. Let F be a probability measure on [0,+∞] such that F ([0,+∞)) > pc(d). There exists
a deterministic function µ : Rd → [0,+∞) such that for everyM ∈ R+ satisfying F ([0,M ]) > pc(d),
we have the following convergences:

∀x ∈ Zd , µ(x) = inf
n∈N∗

E
î‹T CM (0, nx)

ó
n

= lim
n→+∞

E
î‹T CM (0, nx)

ó
n

, (5.1)

∀x ∈ Zd , lim
n→∞

‹T CM (0, nx)

n
= µ(x) a.s. and in L1, (5.2)

∀x ∈ Zd , lim
n→∞

‹T C∞(0, nx)

n
= µ(x) in probability , (5.3)

∀x ∈ Zd , lim
n→∞

T (0, nx)

n
= θ2δµ(x) + (1− θ2)δ+∞ in distribution, (5.4)

where θ = P[0 ∈ C∞].
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Note that even if the definition (5.1) of µ(x) requires to introduce a parameter M , the constant
µ(x) does not depend on M . Note also that if instead of taking the point x̃CM in the infinite cluster
CM of edges with passage time less than M , we take the point x̃C∞ in the infinite cluster C∞ of
edges with finite passage time, the almost sure convergence is weakened into the convergence in
probability (5.3). Without any regularization, the convergence in (5.4) is only in law. As in the
classical first passage percolation model, the function µ can be extended, by homogeneity, into a
pseudo-norm on Rd. We also know that either µ = 0, or µ is indeed a norm. Proposition 39 gives
strong enough integrability properties for ‹T CM (0, x) to ensure that the convergence (5.2) is uniform
in all directions.

Theorem 41. Let F be a probability measure on [0,+∞] such that F ([0,+∞)) > pc(d). Then for
every M ∈ R+ such that F ([0,M ]) > pc(d), we have

lim
n→∞

sup
x∈Zd , ‖x‖1≥n

∣∣∣∣∣‹T CM (0, x)− µ(x)

‖x‖1

∣∣∣∣∣ = 0 a.s.

In the case where µ is a norm, Theorem 41 is equivalent to the classical a.s. shape theorem
for the regularized times ‹T CM (see Theorem 43 below for a precise statement). Under the only
assumption that µ is a norm, this shape theorem is a tool to study the lower large deviations of the
point-to-line passage times, i.e., the infimum of the passage time of a path from the point 0 to the
hyperplane {x = (x1, . . . , xd) : x1 = n} for large n, at least for particular probability measures F .
This allow us to extend Kesten’s study on the positivity of the time constant.

Theorem 42. Let F be a probability measure on [0,+∞] such that F ([0,+∞)) > pc(d). Then
either µ is identically equal to 0 or µ(x) > 0 for all x 6= 0, and we know that

µ = 0 ⇐⇒ F ({0}) ≥ pc(d) .

Suppose now that F ({0}) < pc(d), then µ is a norm and we denote by Bµ the unit ball for this
norm:

Bµ = {x ∈ Rd : µ(x) ≤ 1} .

We define Bt (resp. ‹BCMt , ‹BC∞t ) as the enlarged set of all points reached from the origine within a
time t :

Bt = {z + u : z ∈ Zd , T (0, z) ≤ t , u ∈ [−1/2, 1/2]d} .
(resp. ‹T CM , ‹T C∞). Let Ld be the Lebesgue measure on Rd, and A4B be the symmetric difference
between two sets A and B. Roughly speaking, Bµ is the limit of the sets Bt, ‹BCMt and ‹BC∞t .

Theorem 43. Let F be a probability measure on [0,+∞] such that F ([0,+∞)) > pc(d) and
F ({0}) < pc(d). Then

∀ε > 0 , a.s., ∃t0 ∈ R+ , ∀t ≥ t0 , (1− ε)Bµ ⊂
‹BCMt
t
⊂ (1 + ε)Bµ , (5.5)

a.s., lim
t→∞
Ld
( ‹BC∞t

t
4Bµ

)
= 0 (5.6)

and on the event {0 ∈ C∞},

a.s.,
1

td

∑
x∈Bt∩Zd

δx/t converges weakly towards θ1BµLd when t→∞ . (5.7)
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As we said previously, the convergence (5.5) is in fact equivalent to the uniform convergence,
Theorem 41, once the positivity of µ is known from Theorem 42. The convergence (5.6) can be
deduced from (5.5) by a comparison between ‹T CM (0, x) and ‹T C∞(0, x) for any x in a compact set
and a wise use of an ergodic theorem. The convergence (5.7) can be deduced from (5.6) by using
the fact that, at a mesoscopic level, the density of points inside C∞ is asymptotically θ.

5.2 Continuity of the time constant in a supercritical Bernoulli per-
colation cluster

In this section and in the next one, we present the results we obtained with Olivier Garet, Régine
Marchand and Eviatar B. Procaccia in [GMPT15]. The time constant is now defined for general
i.i.d. first passage percolation with possibly infinite passage time, and we want to extend the
property of the continuity of the time constant with respect to the distribution of the passage
times in this setting. Since we now have to deal with different probability measures, we emphasize
the dependence on the distribution F we consider by adding a subscript on all the quantities we
manipulate: tF (e), TF , CF,M , CF,∞, µF . We obtain the following result.

Theorem 44. Let F, (Fn)n∈N be probability measures on [0,+∞] such that for every n ∈ N,
Fn([0,+∞)) > pc(d) and F ([0,+∞)) > pc(d) . If Fn converges weakly towards F , then

lim
n→+∞

sup
x∈Sd−1

|µFn(x)− µF (x)| = 0 .

This implies immediately the convergence of the corresponding asymptotic shapes, i.e., the
convergence of the unit balls BµFn towards BµF , when they are defined.

Corollary 45. Let F, (Fn)n∈N be probability measures on [0,+∞] such that for every n ∈ N,
Fn([0,+∞)) > pc(d), F ([0,+∞)) > pc(d) and F ({0}) < pc(d). If Fn converges weakly towards
F , then

lim
n→+∞

dH(BµFn ,BµF ) = 0 ,

where dH is the Hausdorff distance between non-empty compact sets of Rd.

Particularly, when Fp = pδ1 + (1 − p)δ+∞, the norm µFp governs the asymptotic distance in
the infinite cluster of a supercritical Bernoulli percolation (see [GM04, GM07, GM10]). We get the
following corollary.

Corollary 46. For p > pc(d), let us denote by Bp the unit ball for the norm that is associated to
the chemical distance in supercritical bond percolation with parameter p. Then,

p ∈ (pc(d), 1] 7→ Bp

is continuous for the Hausdorff distance between non-empty compact sets of Rd.

The structure of the proof follows the approach initiated by Cox and Kesten [CK81, Kes86]. It
is divided into three steps:
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Step 1 - Prove that if Fn, F are probability measures on [0,+∞] such that Fn([0,+∞)) > pc(d) and
F ([0,+∞)) > pc(d), if Fn converges weakly towards F and if Fn dominates stochastically F
for all n ∈ N, then for every x ∈ Zd,

lim sup
n→∞

µFn(x) ≤ µF (x) .

Step 2 - Prove the continuity of the time constant, Theorem 44, for probability measures Fn, F with
compact support on R+.

Step 3 - Prove that if F is a probability measure on [0,+∞] such that F ([0,+∞)) > pc(d), and if
FK = 1[0,K)F + F ([K,+∞])δK is the distribution of the passage times truncated a level K,
then for every x ∈ Zd,

lim
K→∞

µFK (x) = µF (x) .

By a coupling between probability measures, it is easy to see in the classical finite first passage
percolation that when a probability measure G stochastically dominates a probability measure F ,
then µG(x) ≥ µF (x) for every x ∈ Zd. The same result is not obvious in the case of possibly infinite
passage times because of the use of the regularized passage time ‹T CG,MG (0, x) = TG(0̃CG,M , x̃CG,M ) and‹T CF,MF (0, x) = TF (0̃CF,M , x̃CF,M ). Indeed, the starting and ending point of the geodesics considered
here depend on the distributions G and F . A preliminary step is thus to get rid of this dependance,
by proving that

∀x ∈ Zd , µF (x) = inf
n→∞

E
î
TF (0̃CH,M ,›nxCH,M )

ó
n

= lim
n→∞

TF (0̃CH,M ,›nxCH,M )

n
a.s. , (5.8)

for an alternative probability measure H and a sufficiently large constant M . Using the alternative
definition (5.8) of the norm µF , it is easy to recover the monotonicity of µF (x) with respect to F .

The proof of Step 1 is a straightforward adaptation of Cox and Kesten’s arguments in [Cox80,
CK81, Kes86]. It relies on the coupling between laws, on the definition of µF (x) as an infimum and
on the integrability of the regularized passage times without moment assumption on the passage
times of the edges. We obtained all the needed ingredients in [CT14b] (see the previous section).
Step 2 remains the same as in Kesten [Kes86], since it deals only with passage times with compact
support on R+. The delicate part of the proof is Step 3. Following the strategy of Cox and Kesten
[CK81, Kes86], we consider a fixed x in Zd and a geodesic γ for the time TFK (0, x) (we omit here
intentionally the question of the regularization of the times). This geodesic contains bad edges e
such that TF (e) > K. To control the difference TF (0, x)− TFK (0, x), we transform the path γ into
a path γ′ by removing these bad edges and bypass each one of them, so that TF (γ′) − TFK (γ) is
small. Since the only assumption we make on F ({+∞}) is that F ({+∞}) < 1− pc(d), it is not the
case that any edge e is surrounded by a shape of edges with bounded passage time that disconnect
e from infinity, thus we have no hope to construct the bypass around a bad edge e of γ inside such
a shape, as Cox and Kesten did. This is the reason why we cannot perform our construction of γ′

at the microscopic scale. We use instead a coarse graining argument, in the spirit of the work of
Antal and Pisztora [AP96], to construct the bypasses at the scale of good blocks.
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5.3 Continuity in related models

5.3.1 Cheeger constant

In this section we restrict ourselves to the dimension d = 2. As presented in Section 1.3.1, the study
of the Cheeger constant is closely linked with the study of first passage percolation by the mere
definition of the underlying norms in these two models: the norm βp in the isoperimetric problem
and the norm µF in first passage percolation. We recall the definition on βp for a fixed parameter
p > pc(2) = 1/2. We denote by Cp is the a.s. unique infinite cluster of the supercritical Bernoulli
percolation on Z2 of parameter p. With any path γ we associate

bp(γ) = |{e ∈ ∂+γ : e is p-open}| ,

where ∂+γ is the right-boundary of γ. For all x, y ∈ Cp we define

bp(x, y) = inf{bp(γ) : γ is a right-most path from x to y} .

The norm βp is finally defined via the ergodic subadditive theorem as the following limit:

∀x ∈ R2 , βp(x) = lim
n→∞

bp(0̃
Cp ,›nxCp)
n

a.s. and in L1 .

The Cheeger constant limn→∞ nϕn(p) is defined as the solution of a continuous isoperimetric prob-
lem associated with the norm βp, and the shape Ŵp is defined as the Wulff crystal associated with
βp (for more definitions, we refer to Section 1.3.1). Together with Olivier Garet, Régine Marchand
and Eviatar B. Procaccia, we prove in [GMPT15] the following result.

Theorem 47. Let d = 2. The applications

p ∈ (pc(2), 1] 7→ lim
n→∞

nϕn(p) and p ∈ (pc(2), 1] 7→ Ŵp

are continuous, the last one for the Hausdorff distance between non-empty compact sets of R2.

Theorem 47 is a straightforward consequence of the continuity of the norm βp.

Proposition 48. Let d = 2. For every p ∈ (pc(2), 1],

lim
q→p

sup
x∈S1
|βq(x)− βp(x)| = 0 .

As in the previous section, we consider a coupling of the percolations with different parameters.
If pc(2) < p < q, there is no trivial comparison between βp(x) and βq(x):

• if γ is a q-open path from 0 to x such that bq(0, x) = bq(γ), then γ may not be p-open;

• if γ is a p-open path from 0 to x such that bp(0, x) = bp(γ), then γ is q-open by coupling but
bq(γ) can be bigger than bp(γ) since some right-most edges of γ can be p-closed but q-open.

However, the proof of Proposition 48 is very similar to the step 3 of the proof of the continuity of the
time constant in first passage percolation, Theorem 44. Let pc(2) < p < q, and consider a q-open
path γ from 0 to x such that bq(0, x) = bq(γ). Some edges of γ are bad, in the sense that they are
q-open but p-closed. We construct a modification γ′ of γ which is p-open by removing these bad
edges, and bypassing them at the scale of good mesoscopic blocks, with the same construction as
in the proof of Theorem 44. We control bp(0, x) − bq(0, x) with bp(γ

′) − bq(γ), and this allows us
to conclude the proof of Proposition 48.
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5.3. Continuity in related models

5.3.2 Contact process

We consider again the case of any dimension d ≥ 2. This section is devoted to the result we obtain
with Olivier Garet and Régine Marchand in [GMT15] about the contact process. Let λ > λc be
a supercritical rate of infection, the rate of recovering being 1. We recall that the time constant
µλ associated with a supercritical contact process (ξ

λ,{0}
t )t≥0 is defined by Garet and Marchand in

[GM12, GM14] via an almost subadditive ergodic theorem as

∀x ∈ Zd , µλ(x) = lim
n→∞

σ
{0}
λ (nx)

n
Pλ-a.s. and in L1(Pλ) ,

where σ{0}λ (x) is the essential hitting time of x ∈ Zd, that can be seen as a renewal point at which
x is infected and this infection survives. We state the following result.

Theorem 49. For every λ > λc(Zd), we have

lim
λ′→λ

sup
x∈Sd−1

|µλ′(x)− µλ(x)| = 0 .

Let Bµλ (resp. Bµλ′ ) be the unit ball associated with the norm µλ (resp. µλ′). As a straight-
forward consequence of Theorem 49, we obtain the convergence of the corresponding asymptotic
shapes.

Corollary 50. For every λ > λc(Zd), we have

lim
λ′→λ

dH(Bµλ′ ,Bµλ) = 0 ,

where dH denotes the Hausdorff distance between non-empty compact sets of Rd.

In the context of the contact process we recover by coupling the monotonicity of the norm µλ
with respect to the parameter λ: λ 7→ µλ is non increasing on (λc(Zd),+∞).

The first part of the proof is, exactly as in the proof of Theorem 44, to establish the left-
continuity λ 7→ µλ(x) for any x ∈ Zd. Similarly to the proof of Theorem 44, this left-continuity is a
consequence of a coupling of contact processes with different parameters, of the expression of σ{0}λ
as an infimum through an almost subadditive ergodic theorem and of the integrability of σ{0}λ . The
proof is a little bit complicated by the necessity to condition on the survival of the processes, but
remains quite easy.

The study of the right-continuity is more delicate, and is rather different from the corresponding
part of the proof of Theorem 44. It relies on ideas used by Garet and Marchand in [GM14] to study
the lower large deviations of the contact process in random environment. For a fixed parameter
λ > λc(Zd), their argument can be roughly summarize as follows. Suppose that the infected region
is abnormally big at a time t, i.e., some essential hitting times σ{0}λ (x) are abnormally small. They
consider boxes at a mesoscopic scale, and say that a box is good if the infection propagates at a
typical speed in this box. The fact that σ{0}λ (x) is abnormally small for some x implies that there
exists a too fast path of infection from 0 to x, along which a positive proportion of boxes cannot
be good. Since the probability that a box is good can be chosen as close to 1 as we need (by
considering boxes large enough), the probability that there exists x such that σ{0}λ (x) is abnormally
small decays exponentially fast with ‖x‖1.
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Chapter 5. Time constant

Consider now λc < λ ≤ λ′, thus µλ′ ≤ µλ. If µλ′ ≤ µλ − ε for a positive ε, then Bµλ is strictly
included in Bµλ′ . We consider the rescaling by blocks introduced by Garet and Marchand in the
study of the large deviations for the contact process of parameter λ. Since the boxes have finite
size, we can suppose that with high probability the infection events are exactly the same for the
contact processes of parameters λ and λ′ in such boxes, simply by choosing λ′ close enough to λ.
In this case, the contact process ξλ′,{0} is very similar to ξλ,{0} in all such good boxes, and thus its
asymptotic shape should be given by Bµλ . The fact that the infected region looks like Bµλ′ , if Bµλ′
is perceptibly bigger than Bµλ , can be seen as a large deviation event for the process ξλ′,{0}, and
the probability that it happens can be controlled in the same way as the lower large deviations for
the contact process ξλ,{0}.
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Chapter 6

Open problems

We try to summarize in this section some open questions related to our works, and in which we are
interested. Some of them are on-going works, alone or in collaboration with colleagues.

6.1 Maximal flow in first passage percolation on (Zd,Ed)

Some questions are directly linked with the large deviations of maximal flows on (Zd,Ed).

Question 1. Prove a large deviation principle of speed Hd−1(nA)h(n) corresponding to the upper
large deviations of the maximal flows φ(nA, h(n)) through tilted cylinders.

Such an upper large deviation principle is probably the missing piece we need to tackle the
problem of proving a more general large deviation principle on the environment for the streams in
a domain.

Question 2. Prove a large deviation principle for the environment in a general domain (Ω,Γ1,Γ2),
from which can be derived large deviation principles for the maximal flows φn from Γ1

n to Γ2
n in Ωn,

for the corresponding maximal streams and the corresponding minimal cutsets.

This could give us a general picture of all the large deviations for flows through domains.
Another direction we are interested in is the study of the behavior of maximal flows for capacities

with heavy tail distribution. A first question is the definition of the asymptotic rescaled maximal
flow ν without moment assumption.

Question 3. Prove the existence of an asymptotic rescaled maximal flow ν without moment as-
sumption. Give some necessary and sufficient conditions for the a.s. convergence of the rescaled
flows τ(nA, h(n)) and φ(nA, h(n)) towards this constant.

As we have seen in Chapter 5, answering this question could give us tools to study the continuity
of ν.

Question 4. Prove that ν is continuous with respect to the distribution of the capacities of the
edges.

Another approach to this question is to understand the link between the tail distribution of F
and that of φ(A, h), in the spirit of the work of Ahlberg [Ahl15] concerning the distance in classical
first passage percolation.
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Chapter 6. Open problems

Question 5. Understand the link between P[t(e) ≥ x] and P[φ(A, h) ≥ x].

A third direction we are interested in is the study of maximal flows through a non-homogeneous
domain (Ω,Γ1,Γ2). Let Fx be the distribution the passage times of the edges near x ∈ Ω. If x 7→ Fx
varies smoothly enough, thanks to the (likely) continuity of F 7→ νF and the approach we developed
to study the maximal flows through (Ω,Γ1,Γ2) in the homogeneous case using boxes of mesoscopic
size (see Chapter 4), we have hope to be able to study maximal flows in a non-homogeneous setting.

Question 6. Prove the a.s. convergence of maximal flows, maximal streams and minimal cutsets
through a domain (Ω,Γ1,Γ2) with independent capacities whose distribution varies smoothly inside
the domain.

6.2 Random distance in first passage percolation on (Zd,Ed)

Large deviations for the first passage times T (0, x) and related estimates for the set B(t) of points
reached within time t have already been studied, see Kesten’s paper [Kes93] for instance. However,
concerning the set B(t), these large deviations are somehow frustrating, since they only control the
probability that one point which is abnormally far away belongs to B(t), or that a point which is
abnormally close to the origin does not belong to B(t). We would like to understand how goes to
zero the probability that B(t)/t diverges from its asymptotic shape Bµ in volume.

Question 7. Study P[Ld(B(t), tA) ≤ εt] for A 6= Bµ.

The next step would be to prove a corresponding large deviation principle in volume.

Question 8. Prove a large deviation principle for B(t)/t in volume.

Another direction that interests us is the study of first passage percolation in the non i.i.d. but
ergodic and stationary case. Garet and Marchand [GM04] generalized results of Boivin [Boi90] in
this setting. However, Garet and Marchand study the case of a stationary and ergodic probability
measure for the passage times on the infinite cluster of an i.i.d. supercritical Bernoulli percolation.
What if the underlying percolation itself is not i.i.d. ? Drewitz, Ráth and Sapozhnikhov [DRS14]
made recently great advances in this direction by proving the existence of a time constant and a shape
theorem for the chemical distance in percolation models with long-range correlations. However,
many questions remain open, like the continuity of the time constant with respect to the parameter
of the percolation in this setting.

Question 9. Prove the continuity of the time constant with respect to the parameter of the perco-
lation in percolation models with long-range correlations.

6.3 Isotropic models of first passage percolation

When we study the model of first passage percolation on (Zd,Ed), the time constant µ(~v) (resp. the
asymptotic rescaled maximal flow ν(~v)) we obtain depends on the direction ~v we consider. This can
be an issue for technical reasons - the properties of the shape Bµ, for instance the question of its
strict convexity in any given direction, are not well understood - and when we have in mind some
applications - when first passage percolation is seen as a model for communication networks, it may
not be relevant to consider a non-isotropic setting.
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6.3. Isotropic models of first passage percolation

It is possible to define an isotropic model of first passage percolation by considering i.i.d. passage
times associated with the edges of an underlying random graph such as the Delaunay graph. This
graph is constructed as follows. Let Q ⊂ Rd be a homogeneous and stationary Poisson point process
on Rd. The cell associated with a point x ∈ Q is defined as the set of all points in Rd that are
closest to x than to any other point of Q. The Delaunay graph has for vertices the points of Q, and
two such vertices are linked by an edge if and only if the boundaries of their cells has a common face
of dimension d− 1. Given such a graph, one can associated independently with the edges a family
of i.i.d. passage times. First passage percolation on the Delaunay graph has already been studied,
see the review of Howard [How04] and the works of Wahidi-Asl and Wierman [VAW90, VAW92].
However some particular properties of this model are still not yet fully understood, and we are
particularly interested in the large deviations aspect.

Question 10. Complete the study of the large deviations of the distance in first passage percolation
on the Delaunay graph.

Moreover, maximal flows in first passage percolation on the Delaunay graph have never been
studied.

Question 11. Study the maximal flows in first passage percolation on the Delaunay graph (conver-
gence, large deviations...).

Another approach is to consider the Boolean model. Consider a homogeneous and stationary
Poisson point process Q on Rd, with intensity λ with respect to the Lebesgue measure. We center at
each point x ∈ Q a ball of random radius rx, such that the radii are i.i.d. with common distribution
the probability measure G on R+. The union of all these balls is denoted by Σ, which is thus a
random subset of Rd. This defines the Poisson Boolean model, see for instance the book of Meester
and Roy [MR96] on the subject. It is well known that given the dimension d and the law G of the
radii, a phase transition occurs: there exists a parameter λc ∈ R+ such that if λ > λc then a.s. the
set Σ is not bounded - we say that Σ percolates -, and if λ < λc then a.s. the set Σ is bounded.
Moreover Gouéré [Gou08] proved that λc > 0 if and only if G admits a moment of order d.

On this Boolean model, Gouéré and Marchand [GM08] defined a first passage percolation by
allowing a particle to travel at speed 1 outside Σ and at infinite speed inside Σ. This leads to the
definition of a random pseudo-metric Tλ, and by an application of a classical ergodic subadditive
theorem they define a time constant µλ as the a.s. and L1 limit of the rescaled times T (0, x)/‖x‖2.
Since the model is isotropic, this time constant does not depend on x. The constant µ−1

λ is the
asymptotic speed at which a particle can travel in this model. If λ > λc, since Σ percolates, it is
easy to see that µλ = 0. We define λµ = inf{λ : µλ = 0}. Gouéré and Marchand gave in [GM08]
some necessary and some sufficient conditions on G to have λµ > 0. We want to prove that this
critical parameter is the same as λc.

Question 12. Prove that λµ = λc. Prove that µλc = 0.

The case of unbounded radii is of particular interest since we have to deal with long distance
correlations.

We would also like to define and study a maximal flow through the vacant set (i.e., Σc) of
a Boolean model, since it could be an interesting continuous generalization of maximal flows on
(Zd,Ed).

Question 13. Define a maximal flow through the vacant set of a Boolean model and study its
asymptotic behavior.
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6.4 Related models

As we have seen in Section 5.3, methods developed to study first passage percolation can be useful
to study other growth models. We are interested in generalizing the continuity results we obtained
in first passage percolation and for the contact process.

Question 14. Give a general set of hypotheses that assure that the time constant associated with a
growth process is continuous with respect to the law of the process.

The study of the Cheeger constant in Section 1.3.1 is restricted to the case of dimension 2.
However, Gold [Gol16] extended recently the works of Biskup, Louidor, Procaccia and Rosenthal
[BLPR12] to any dimension d, proving the existence of the Cheeger constant via a generalized
definition of the norm βp. We are interested in extended the proof of the continuity of the Cheeger
constant in higher dimension.

Question 15. Prove the continuity of the Cheeger constant with regard to the parameter of the
underlying percolation in any dimension d ≥ 3.

This question is closely linked with the study of the continuity of the rescaled maximal flow ν
in first passage percolation on (Zd,Ed) since the generalized norm βp is defined as an infimum of a
certain quantity over cutsets.

Consider now the random walk on Zd evolving in a i.i.d. random potential (V (x))x∈Zd . An
object of interest in this setting is the Lyapounov exponent. The model of (vertex) first passage
percolation on Zd can be seen as a zero-temperature limit of this model, the Lyapounov exponent
being equal in this case to the time constant. See for instance Mourrat [Mou12] for a shape theorem
in this setting, and Le [Le13] for a proof of the continuity of the Lyapounov exponent with respect
to the distribution of the potentials. We would like to study the corresponding positive-temperature
generalization of minimal cutsets in first passage percolation.

Question 16. Study a positive-temperature generalization of minimal cutsets in first passage per-
colation.

This problem is difficult to tackle. The study of random surfaces is in general very hard, and
mathematicians have mainly studied so far more tractable models of random surfaces, namely the
effective interface models (see for instance Giacomin [Gia01] and Velenik [Vel06]) where the random
surface can be seen as the graph of a random function from Zd to R.
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